cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101600 Expansion of g.f. c(3x)^2, where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 6, 45, 378, 3402, 32076, 312741, 3127410, 31899582, 330595668, 3471254514, 36848701764, 394807518900, 4263921204120, 46370143094805, 507343918566690, 5580783104233590, 61682339573108100, 684673969261499910, 7629224228913856140, 85308598196036755020
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Crossrefs

Programs

  • Maple
    Z[0]:=1: for k to 30 do Z[k]:=simplify(1/(1-3*z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(coeff(gser, z, n)/3, n=1..19); # Zerinvary Lajos, May 21 2008
  • Mathematica
    a[n_] := 3^n * CatalanNumber[n + 1]; Array[a, 20, 0] (* Amiram Eldar, May 15 2022 *)

Formula

G.f.: 4/(1+sqrt(1-12*x))^2.
a(n) = 3^n * A000108(n+1).
(n+2)*a(n) -6*(2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 15 2011
O.g.f. A(x) = 1/x*series reversion( x/(1 + 3*x)^2 ). 1 + x*A'(x)/A(x) = 1/sqrt(1 - 12*x) is the o.g.f. for A098658. - Peter Bala, Jul 17 2015
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 87/121 + 648*arcsin(1/(2*sqrt(3)))/(121*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 93/169 + 648*arcsinh(1/(2*sqrt(3)))/(169*sqrt(13)). (End)
E.g.f.: BesselI(1,6*z)*exp(6*z)/(3*z) where BesselI is the modified Bessel function of type I. - Karol A. Penson, Feb 17 2025