cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101636 a(n) = least odd prime p such that (p^(P(n))-1)/(p-1) is prime with P(i) = i-th prime, n>1.

Original entry on oeis.org

3, 7, 3, 5, 3, 11, 11, 113, 151, 19, 61, 53, 89, 5, 307, 19, 19, 491, 3, 11, 271, 41, 251, 271, 359, 3, 19, 79, 233, 5, 7, 13, 11, 5, 29, 71, 139, 127, 139, 2003, 5, 743, 673, 593, 383, 653, 661, 251, 6389, 2833, 223, 163, 37, 709, 131, 41, 2203, 941, 2707, 13, 1283
Offset: 2

Views

Author

Pierre CAMI, Jan 26 2005

Keywords

Comments

All primes certified using PRIMO.

Examples

			(3^3-1)/2=26/2=13 prime so for P(2) a(2)=3.
		

Programs

  • Mathematica
    a = {}; Do[ p1 = Prime[n]; k = 2; While[p2 = Prime[k]; ! PrimeQ[(p2^p1 - 1)/(p2 - 1)], k++ ]; AppendTo[a, p2];, {n, 2, 62}]; a (* Ray Chandler, Jan 27 2005 *)
    f[n_] := Block[{P = Prime[n], k = 2}, While[p = Prime[k]; !PrimeQ[(p^P - 1)/(p - 1)], k++ ]; Prime[ k]]; Table[ f[n], {n, 2, 62}] (* Robert G. Wilson v, Jan 27 2005 *)
  • PARI
    a(n) = my(p=3, q=prime(n)); while (!ispseudoprime((p^q-1)/(p-1)), p=nextprime(p+1)); p; \\ Michel Marcus, Mar 21 2023

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Jan 27 2005