A101707 Number of partitions of n having positive odd rank (the rank of a partition is the largest part minus the number of parts).
0, 0, 1, 0, 2, 1, 4, 2, 7, 6, 13, 11, 22, 22, 38, 39, 63, 69, 103, 114, 165, 189, 262, 301, 407, 475, 626, 733, 950, 1119, 1427, 1681, 2118, 2503, 3116, 3678, 4539, 5360, 6559, 7735, 9400, 11076, 13372, 15728, 18886, 22184, 26501, 31067, 36947, 43242, 51210, 59818, 70576, 82291, 96750
Offset: 0
Keywords
Examples
a(7)=2 because the only partitions of 7 with positive odd rank are 421 (rank=1) and 52 (rank=3). From _Gus Wiseman_, Feb 07 2021: (Start) Also the number of integer partitions of n into an even number of parts, the greatest of which is odd. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot) are: 11 . 31 32 33 52 53 54 55 1111 51 3211 71 72 73 3111 3221 3222 91 111111 3311 3321 3322 5111 5211 3331 311111 321111 5221 11111111 5311 7111 322111 331111 511111 31111111 1111111111 Also the number of integer partitions of n into an odd number of parts, the greatest of which is even. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot, A = 10) are: 2 . 4 221 6 421 8 432 A 211 222 22111 422 441 433 411 431 621 442 21111 611 22221 622 22211 42111 631 41111 2211111 811 2111111 22222 42211 43111 61111 2221111 4111111 211111111 (End)
References
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- FindStat, St000145: The Dyson rank of a partition
Crossrefs
Programs
-
Maple
b:= proc(n, i, r) option remember; `if`(n=0, max(0, r), `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1- `if`(r<0, irem(i, 2), r)))) end: a:= n-> b(n$2, -1)/2: seq(a(n), n=0..55); # Alois P. Heinz, Jan 29 2021
-
Mathematica
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&OddQ[Max[#]]&]],{n,0,30}] (* Gus Wiseman, Feb 10 2021 *) b[n_, i_, r_] := b[n, i, r] = If[n == 0, Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]]; a[n_] := b[n, n, -1]/2; a /@ Range[0, 55] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
Formula
G.f.: Sum((-1)^(k+1)*x^((3*k^2+k)/2)/(1+x^k), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004
a(n) = A340692(n)/2. - Gus Wiseman, Feb 07 2021
Extensions
More terms from Joerg Arndt, Oct 07 2012
a(0)=0 prepended by Alois P. Heinz, Jan 29 2021
Comments