A027193
Number of partitions of n into an odd number of parts.
Original entry on oeis.org
0, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 29, 37, 52, 66, 90, 113, 151, 190, 248, 310, 400, 497, 632, 782, 985, 1212, 1512, 1851, 2291, 2793, 3431, 4163, 5084, 6142, 7456, 8972, 10836, 12989, 15613, 18646, 22316, 26561, 31659, 37556, 44601, 52743, 62416, 73593, 86809, 102064, 120025, 140736
Offset: 0
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 + 10*x^8 + 16*x^9 + 20*x^10 + ...
From _Gus Wiseman_, Feb 11 2021: (Start)
The a(1) = 1 through a(8) = 10 partitions into an odd number of parts are the following. The Heinz numbers of these partitions are given by A026424.
(1) (2) (3) (4) (5) (6) (7) (8)
(111) (211) (221) (222) (322) (332)
(311) (321) (331) (422)
(11111) (411) (421) (431)
(21111) (511) (521)
(22111) (611)
(31111) (22211)
(1111111) (32111)
(41111)
(2111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part is odd are the following. The Heinz numbers of these partitions are given by A244991.
(1) (11) (3) (31) (5) (33) (7) (53)
(111) (1111) (32) (51) (52) (71)
(311) (321) (322) (332)
(11111) (3111) (331) (521)
(111111) (511) (3221)
(3211) (3311)
(31111) (5111)
(1111111) (32111)
(311111)
(11111111)
(End)
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 39, Example 7.
- T. D. Noe, Table of n, a(n) for n = 0..999
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- D. R. C. Chaves, Um estudo combinatório e comparativo de identidades teta parciais de Andrews e Ramanujan, 2011. In Portuguese.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_0(n).
The even-length version is
A027187.
The case of odd maximum as well as length is
A340385.
Other cases of odd length:
-
A024429 counts set partitions of odd length.
-
A067659 counts strict partitions of odd length.
-
A089677 counts ordered set partitions of odd length.
-
A166444 counts compositions of odd length.
-
A174726 counts ordered factorizations of odd length.
-
A332304 counts strict compositions of odd length.
-
A339890 counts factorizations of odd length.
A026804 counts partitions whose least part is odd.
A072233 counts partitions by sum and length.
A101707 counts partitions of odd positive rank.
-
g:=sum(x^(2*k)/product(1-x^j,j=1..2*k-1),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=1..45); # Emeric Deutsch, Apr 05 2006
-
nn=40;CoefficientList[Series[ Sum[x^(2j+1)Product[1/(1- x^i),{i,1,2j+1}],{j,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Dec 01 2012 *)
a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n], OddQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n], OddQ[ First@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n + 1], #[[-1]] == 1 && EvenQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n + 1], EvenQ[ First@#] && (Length[#] < 2 || #[[1]] != #[[2]]) &]]; (* Michael Somos, Dec 28 2014 *)
-
{a(n) = if( n<1, 0, polcoeff( sum( k=1, n, if( k%2, x^k / prod( j=1, k, 1 - x^j, 1 + x * O(x^(n-k)) ))), n))}; /* Michael Somos, Jul 24 2012 */
-
q='q+O('q^66); concat([0], Vec( (1/eta(q)-eta(q)/eta(q^2))/2 ) ) \\ Joerg Arndt, Mar 23 2014
A067659
Number of partitions of n into distinct parts such that number of parts is odd.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
Offset: 0
From _Gus Wiseman_, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
5 6 7 8 9 A B C D E F
321 421 431 432 532 542 543 643 653 654
521 531 541 632 642 652 743 753
621 631 641 651 742 752 762
721 731 732 751 761 843
821 741 832 842 852
831 841 851 861
921 931 932 942
A21 941 951
A31 A32
B21 A41
B31
C21
54321
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160 (March 2016), Pages 60-75, function q_o(n).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Numbers with these strict partitions as binary indices are
A000069.
The Heinz numbers of these partitions are
A030059.
Other cases of odd length:
-
A024429 counts set partitions of odd length.
-
A089677 counts ordered set partitions of odd length.
-
A174726 counts ordered factorizations of odd length.
-
A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case
A026832.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
-
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 09 2021 *)
-
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
-
N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1,S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
concat( [0], Vec(gf) ) /* Joerg Arndt, Oct 20 2012 */
-
N=66; q='q+O('q^N); S=1+sqrtint(N);
gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
concat( [0], Vec(gf) ) \\ Joerg Arndt, Apr 01 2014
A064173
Number of partitions of n with positive rank.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 80, 106, 136, 178, 225, 291, 366, 466, 583, 735, 912, 1140, 1407, 1743, 2140, 2634, 3214, 3932, 4776, 5807, 7022, 8495, 10225, 12313, 14762, 17696, 21136, 25236, 30030, 35722, 42367, 50216, 59368, 70138, 82665
Offset: 1
a(20) = p(18) - p(13) + p(5) = 385 - 101 + 7 = 291.
From _Gus Wiseman_, Feb 09 2021: (Start)
The a(2) = 1 through a(9) = 13 partitions of positive rank:
(2) (3) (4) (5) (6) (7) (8) (9)
(31) (32) (33) (43) (44) (54)
(41) (42) (52) (53) (63)
(51) (61) (62) (72)
(411) (421) (71) (81)
(511) (422) (432)
(431) (441)
(521) (522)
(611) (531)
(5111) (621)
(711)
(5211)
(6111)
(End)
Note: A-numbers of ranking sequences are in parentheses below.
These partitions are ranked by (
A340787).
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is a multiple of the greatest part.
A200750 counts partitions whose length and greatest part are coprime.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Balance -
A340599 counts alt-balanced factorizations.
A340653 counts balanced factorizations.
-
A064173 := proc(n)
a := 0 ;
for p in combinat[partition](n) do
r := max(op(p))-nops(p) ;
if r > 0 then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A064173(n),n=0..40) ;# Emeric Deutsch, Dec 11 2004
-
Table[Count[IntegerPartitions[n], q_ /; First[q] > Length[q]], {n, 24}] (* Clark Kimberling, Feb 12 2014 *)
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Max[Max[p], Length[p]]]], {n, 20}] (* Clark Kimberling, Feb 28 2014 *)
P = PartitionsP;
a[n_] := (P[n] - Sum[-(-1)^k (P[n - (3k^2 - k)/2] - P[n - (3k^2 + k)/2]), {k, 1, Floor[(1 + Sqrt[1 + 24n])/6]}])/2;
a /@ Range[48] (* Jean-François Alcover, Jan 11 2020, after Wouter Meeussen in A047993 *)
-
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(k+j-2))/(1-x^j))))) \\ Seiichi Manyama, Jan 25 2022
A340604
Heinz numbers of integer partitions of odd positive rank.
Original entry on oeis.org
3, 7, 10, 13, 15, 19, 22, 25, 28, 29, 33, 34, 37, 42, 43, 46, 51, 52, 53, 55, 61, 62, 63, 69, 70, 71, 76, 77, 78, 79, 82, 85, 88, 89, 93, 94, 98, 101, 105, 107, 113, 114, 115, 116, 117, 118, 119, 121, 123, 130, 131, 132, 134, 136, 139, 141, 146, 147, 148, 151
Offset: 1
The sequence of partitions with their Heinz numbers begins:
3: (2) 46: (9,1) 82: (13,1)
7: (4) 51: (7,2) 85: (7,3)
10: (3,1) 52: (6,1,1) 88: (5,1,1,1)
13: (6) 53: (16) 89: (24)
15: (3,2) 55: (5,3) 93: (11,2)
19: (8) 61: (18) 94: (15,1)
22: (5,1) 62: (11,1) 98: (4,4,1)
25: (3,3) 63: (4,2,2) 101: (26)
28: (4,1,1) 69: (9,2) 105: (4,3,2)
29: (10) 70: (4,3,1) 107: (28)
33: (5,2) 71: (20) 113: (30)
34: (7,1) 76: (8,1,1) 114: (8,2,1)
37: (12) 77: (5,4) 115: (9,3)
42: (4,2,1) 78: (6,2,1) 116: (10,1,1)
43: (14) 79: (22) 117: (6,2,2)
Note: Heinz numbers are given in parentheses below.
These partitions are counted by
A101707.
A001222 gives number of prime indices.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
Cf.
A001221,
A006141,
A056239,
A112798,
A168659,
A200750,
A316413,
A325134,
A340601,
A340602,
A340608,
A340609,
A340610.
A340601
Number of integer partitions of n of even rank.
Original entry on oeis.org
1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0
The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
(1) . (3) (22) (5) (42) (7) (44) (9)
(21) (41) (321) (43) (62) (63)
(111) (311) (2211) (61) (332) (81)
(2111) (322) (521) (333)
(11111) (331) (2222) (522)
(511) (4211) (531)
(2221) (32111) (711)
(4111) (221111) (4221)
(31111) (4311)
(211111) (6111)
(1111111) (32211)
(33111)
(51111)
(222111)
(411111)
(3111111)
(21111111)
(111111111)
Note: Heinz numbers are given in parentheses below.
The Heinz numbers of these partitions are
A340602.
- Rank -
A072233 counts partitions by sum and length.
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A034008 counts compositions of even length.
A052841 counts ordered set partitions of even length.
A339846 counts factorizations of even length.
-
b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
`if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
`if`(r<0, irem(i, 2), r))))
end:
a:= n-> b(n$2, -1):
seq(a(n), n=0..55); # Alois P. Heinz, Jan 22 2021
-
Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
(* Second program: *)
b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
a[n_] := b[n, n, -1];
a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
-
p_q(k) = {prod(j=1, k, 1-q^j); }
GB_q(N, M)= {if(N>=0 && M>=0, p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
A_q(50) \\ John Tyler Rascoe, Apr 15 2024
A101198
Number of partitions of n with rank 1 (the rank of a partition is the largest part minus the number of parts).
Original entry on oeis.org
0, 1, 0, 1, 1, 2, 1, 3, 3, 5, 5, 8, 8, 13, 14, 20, 23, 31, 35, 48, 55, 72, 84, 108, 126, 160, 187, 233, 275, 340, 398, 489, 574, 697, 819, 988, 1158, 1390, 1627, 1941, 2271, 2696, 3145, 3721, 4335, 5104, 5938, 6967, 8088, 9462, 10964, 12783
Offset: 1
a(6)=2 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111 have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
-
with(combinat): for n from 1 to 35 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=1 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n],n=1..35);
-
Table[Count[IntegerPartitions[n],?(Max[#]-Length[#]==1&)],{n,60}] (* _Harvey P. Dale, Nov 29 2014 *)
A340385
Number of integer partitions of n into an odd number of parts, the greatest of which is odd.
Original entry on oeis.org
1, 0, 2, 0, 3, 1, 6, 3, 10, 7, 18, 15, 30, 28, 51, 50, 82, 87, 134, 145, 211, 235, 331, 375, 510, 586, 779, 901, 1172, 1366, 1750, 2045, 2581, 3026, 3778, 4433, 5476, 6430, 7878, 9246, 11240, 13189, 15931, 18670, 22417, 26242, 31349, 36646, 43567, 50854
Offset: 1
The a(3) = 2 through a(10) = 7 partitions:
3 5 321 7 332 9 532
111 311 322 521 333 541
11111 331 32111 522 721
511 531 32221
31111 711 33211
1111111 32211 52111
33111 3211111
51111
3111111
111111111
Partitions with odd maximum are counted by
A027193, ranked by
A244991.
The Heinz numbers of these partitions are given by
A340386.
Other cases of odd length:
-
A024429 counts set partitions of odd length.
-
A067659 counts strict partitions of odd length.
-
A089677 counts ordered set partitions of odd length.
-
A166444 counts compositions of odd length.
-
A174726 counts ordered factorizations of odd length.
-
A332304 counts strict compositions of odd length.
-
A339890 counts factorizations of odd length.
A026804 counts partitions whose least part is odd.
A072233 counts partitions by sum and length.
A101707 counts partitions with odd rank.
A160786 counts odd-length partitions of odd numbers, ranked by
A300272.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
A340602
Heinz numbers of integer partitions of even rank.
Original entry on oeis.org
1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 47, 49, 50, 54, 56, 57, 58, 59, 65, 66, 67, 68, 73, 74, 75, 80, 81, 83, 84, 86, 87, 91, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111, 120, 122, 124, 125, 126, 127
Offset: 1
The sequence of partitions with their Heinz numbers begins:
1: () 31: (11) 58: (10,1)
2: (1) 32: (1,1,1,1,1) 59: (17)
5: (3) 35: (4,3) 65: (6,3)
6: (2,1) 36: (2,2,1,1) 66: (5,2,1)
8: (1,1,1) 38: (8,1) 67: (19)
9: (2,2) 39: (6,2) 68: (7,1,1)
11: (5) 41: (13) 73: (21)
14: (4,1) 44: (5,1,1) 74: (12,1)
17: (7) 45: (3,2,2) 75: (3,3,2)
20: (3,1,1) 47: (15) 80: (3,1,1,1,1)
21: (4,2) 49: (4,4) 81: (2,2,2,2)
23: (9) 50: (3,3,1) 83: (23)
24: (2,1,1,1) 54: (2,2,2,1) 84: (4,2,1,1)
26: (6,1) 56: (4,1,1,1) 86: (14,1)
30: (3,2,1) 57: (8,2) 87: (10,2)
Taking only maximum part gives
A061395.
These partitions are counted by
A340601.
The case of positive rank is
A340605.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank = maximum minus minimum part (
A324515).
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A034008 counts compositions of even length.
A052841 counts ordered set partitions of even length.
A339846 counts factorizations of even length.
Cf.
A000041,
A006141,
A056239,
A072233,
A112798,
A168659,
A325134,
A326836,
A326845,
A340386,
A340387.
A101708
Number of partitions of n having positive even rank (the rank of a partition is the largest part minus the number of parts).
Original entry on oeis.org
0, 0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 13, 23, 24, 41, 43, 67, 75, 111, 126, 177, 204, 282, 328, 437, 514, 674, 793, 1021, 1207, 1533, 1814, 2273, 2691, 3344, 3956, 4865, 5754, 7027, 8296, 10060, 11864, 14302, 16836, 20183, 23715, 28301, 33191, 39423, 46152, 54607, 63794, 75200, 87687, 103018
Offset: 0
a(7)=4 because the only partitions of 7 with positive even rank are 7 (rank=6), 61 (rank=4), 511 (rank=2) and 43 (rank=2).
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
A340692
Number of integer partitions of n of odd rank.
Original entry on oeis.org
0, 0, 2, 0, 4, 2, 8, 4, 14, 12, 26, 22, 44, 44, 76, 78, 126, 138, 206, 228, 330, 378, 524, 602, 814, 950, 1252, 1466, 1900, 2238, 2854, 3362, 4236, 5006, 6232, 7356, 9078, 10720, 13118, 15470, 18800, 22152, 26744, 31456, 37772, 44368, 53002, 62134, 73894
Offset: 0
The a(0) = 0 through a(9) = 12 partitions (empty columns indicated by dots):
. . (2) . (4) (32) (6) (52) (8) (54)
(11) (31) (221) (33) (421) (53) (72)
(211) (51) (3211) (71) (432)
(1111) (222) (22111) (422) (441)
(411) (431) (621)
(3111) (611) (3222)
(21111) (3221) (3321)
(111111) (3311) (5211)
(5111) (22221)
(22211) (42111)
(41111) (321111)
(311111) (2211111)
(2111111)
(11111111)
Note: A-numbers of Heinz-number sequences are in parentheses below.
The Heinz numbers of these partitions are (
A340603).
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Odd -
A026804 counts partitions whose least part is odd.
A339890 counts factorizations of odd length.
Cf.
A003114,
A006141,
A027187,
A039900,
A067538,
A096401,
A117409,
A143773,
A324518,
A325134,
A340828,
A340854/
A340855.
-
Table[Length[Select[IntegerPartitions[n],OddQ[Max[#]-Length[#]]&]],{n,0,30}]
Showing 1-10 of 21 results.
Comments