cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101840 Indices of primes in sequence defined by A(0) = 37, A(n) = 10*A(n-1) - 3 for n > 0.

Original entry on oeis.org

0, 1, 11, 14, 50, 193, 497, 2135, 2821, 3761, 7427, 22739, 30451, 37951, 55253
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004

Keywords

Comments

Numbers n such that (330*10^n + 3)/9 is prime.
Numbers n such that digit 3 followed by n >= 0 occurrences of digit 6 followed by digit 7 is prime.
Numbers corresponding to terms <= 497 are certified primes.
a(16) > 10^5. - Robert Price, Jan 29 2015
All terms except the first are congruent to 1, 2 or 5 (mod 6), since 37 | A(3n) and 7 | A(6n+4). - Robert Israel, Dec 02 2015

Examples

			367 is prime, hence 1 is a term.
3666666666667 is prime, hence 11 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime((330*10^n+3) div 9)]; // Vincenzo Librandi, Nov 30 2015
  • Maple
    select(t -> isprime((330*(10^t)+3)/9), [0,seq(seq(6*i+j,j=[1,2,5]),i=0..1000)]); # Robert Israel, Dec 02 2015
  • Mathematica
    A101840[n_] := If[PrimeQ[((330*(10^n)) + 3)*(1/9)] == True, n, 0];
    DeleteDuplicates[Table[A101840[n], {n, 0, 55300}]] (* Abdul Gaffar Khan, Nov 29 2015 *)
  • PARI
    a=37;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-3)
    
  • PARI
    for(n=0,1500,if(isprime((330*10^n+3)/9),print1(n,",")))
    

Formula

a(n) = A102975(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(12)-a(15) derived from A102975 by Robert Price, Jan 29 2015