A101853 a(n) = n*(20 + 15*n + n^2)/6.
6, 18, 37, 64, 100, 146, 203, 272, 354, 450, 561, 688, 832, 994, 1175, 1376, 1598, 1842, 2109, 2400, 2716, 3058, 3427, 3824, 4250, 4706, 5193, 5712, 6264, 6850, 7471, 8128, 8822, 9554, 10325, 11136, 11988, 12882, 13819, 14800
Offset: 1
Examples
Left column the third row of A008292, and subsequent columns defined as partial sums along their preceding neighbors: 1 1 1 1 1 1 1 1 1 1 1 4 5 6 7 8 9 10 11 12 13 14 1 6 12 19 27 36 46 57 69 82 96 A051936 0 6 18 37 64 100 146 203 272 354 450 A101853 0 6 24 61 125 225 371 574 846 1200 1650 A101854 0 6 30 91 216 441 812 1386 2232 3432 5082 A101855 0 6 36 127 343 784 1596 2982 5214 8646 13728 0 6 42 169 512 1296 2892 5874 11088 19734 33462 0 6 48 217 729 2025 4917 10791 21879 41613 75075 ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[6, 18, 37, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 26 2012
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{6,18,37,64},40] (* or *) CoefficientList[Series[(6-6*x+x^2)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 26 2012 *)
-
PARI
a(n)=n*(20+15*n+n^2)/6 \\ Charles R Greathouse IV, Oct 16 2015
Formula
G.f.: x*(6 - 6*x + x^2)/(x - 1)^4. - R. J. Mathar, Dec 06 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
E.g.f.: exp(x)*x*(36 + 18*x + x^2)/6. - Stefano Spezia, Oct 14 2022
Comments