A255961
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 7, 12, 18, 25, 33, 42, ...
0, 6, 18, 37, 64, 100, 146, 203, ...
0, 13, 47, 111, 215, 370, 588, 882, ...
0, 24, 110, 303, 660, 1251, 2160, 3486, ...
0, 48, 258, 804, 1938, 4005, 7459, 12880, ...
0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
Columns k=0-10 give:
A000007,
A000219,
A161870,
A255610,
A255611,
A255612,
A255613,
A255614,
A193427,
A316461,
A316462.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)
A101854
a(n) = n*(n+1)*(n^2 + 21*n + 50)/24.
Original entry on oeis.org
6, 24, 61, 125, 225, 371, 574, 846, 1200, 1650, 2211, 2899, 3731, 4725, 5900, 7276, 8874, 10716, 12825, 15225, 17941, 20999, 24426, 28250, 32500, 37206, 42399, 48111, 54375, 61225, 68696, 76824, 85646, 95200, 105525, 116661, 128649, 141531, 155350
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
5th row of the array shown in
A101853.
-
Table[25 n/12+(71n^2)/24+(11n^3)/12+n^4/24,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{6,24,61,125,225},40] (* Harvey P. Dale, Nov 05 2011 *)
A101855
a(n) = n*(n+1)*(n+2)*(n+4)*(n+23)/120.
Original entry on oeis.org
6, 30, 91, 216, 441, 812, 1386, 2232, 3432, 5082, 7293, 10192, 13923, 18648, 24548, 31824, 40698, 51414, 64239, 79464, 97405, 118404, 142830, 171080, 203580, 240786, 283185, 331296, 385671, 446896, 515592, 592416, 678062, 773262, 878787, 995448
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004
-
Table[n(n+1)(n+2)(n+4)(n+23)/120,{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{6,30,91,216,441,812},40](* Harvey P. Dale, Feb 07 2013 *)
Showing 1-3 of 3 results.
Comments