A101864 Wythoff BB numbers.
5, 13, 18, 26, 34, 39, 47, 52, 60, 68, 73, 81, 89, 94, 102, 107, 115, 123, 128, 136, 141, 149, 157, 162, 170, 178, 183, 191, 196, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 285, 293, 301, 306, 314, 322, 327, 335, 340, 348, 356, 361, 369, 374, 382, 390, 395
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Jean-Paul Allouche and F. Michel Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018-2019.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008), Article 08.3.3.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik, Vol. 78, No. 2 (2021), pp. 1-8.
- Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), 267-273.
Crossrefs
Programs
-
Maple
b:=n->floor(n*((1+sqrt(5))/2)^2): seq(b(b(n)),n=1..60); # Muniru A Asiru, Dec 05 2018
-
Mathematica
b[n_] := Floor[n * GoldenRatio^2]; a[n_] := b[b[n]]; Array[a, 60] (* Amiram Eldar, Nov 22 2018 *)
-
Python
from sympy import S for n in range(1,60): print(int(S.GoldenRatio**2*(int(n*S.GoldenRatio**2))), end=', ') # Stefano Spezia, Dec 06 2018
Formula
a(n) = B(B(n)), n>=1, with B(k)=A001950(k) (Wythoff B-numbers). a(0)=0 with B(0)=0.
Comments