cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101923 Expansion of 2 * arccot(cos(x)).

Original entry on oeis.org

1, 2, 1, -148, -3719, -20098, 5055961, 403644152, 7831409041, -2707151879398, -472143935754479, -22085804322342748, 9362259685093715401, 2995219209329323622102, 274269338931958691728681, -132963342779629343323496848, -70698673853383423350187244639
Offset: 1

Views

Author

Ralf Stephan, Dec 27 2004

Keywords

Comments

Odd coefficients are zero.

Crossrefs

Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A012494 (k=-1), A000364 (k=1), A000464 (k=2), A156138 (k=3), A002439 (k=4).

Programs

  • Maple
    with(gfun):
    series(sin(x)/(1-(1/2)*sin(x)^2), x, 35):
    L := seriestolist(%):
    seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));
    # Peter Bala, Feb 06 2017
  • Mathematica
    With[{nn=40},Take[CoefficientList[Series[2ArcCot[Cos[x]],{x,0,nn}],x] Range[0,nn]!,{3,-1,2}]] (* Harvey P. Dale, Nov 17 2014 *) (* adapted by Vincenzo Librandi, Feb 07 2017 *)

Formula

2*acot(cos(x)) = Pi/2 + x^2/2! + 2*x^4/4! + x^6/6! - 148*x^8/8! - 3719*x^10/10! -...
2*atan(cos(x)) = Pi/2 - x^2/2! - 2*x^4/4! - x^6/6! + 148*x^8/8! + 3719*x^10/10! +...
G.f. sin(x)/(1 - 1/2*sin(x)^2) = x + 2*x^3/3! + x^5/5! - 148*x^7/7! - ... - Peter Bala, Feb 06 2017

Extensions

More terms from Harvey P. Dale, Nov 17 2014
Signs of the data entries corrected by Peter Bala, Feb 06 2017