A101923 Expansion of 2 * arccot(cos(x)).
1, 2, 1, -148, -3719, -20098, 5055961, 403644152, 7831409041, -2707151879398, -472143935754479, -22085804322342748, 9362259685093715401, 2995219209329323622102, 274269338931958691728681, -132963342779629343323496848, -70698673853383423350187244639
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Maple
with(gfun): series(sin(x)/(1-(1/2)*sin(x)^2), x, 35): L := seriestolist(%): seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L))); # Peter Bala, Feb 06 2017
-
Mathematica
With[{nn=40},Take[CoefficientList[Series[2ArcCot[Cos[x]],{x,0,nn}],x] Range[0,nn]!,{3,-1,2}]] (* Harvey P. Dale, Nov 17 2014 *) (* adapted by Vincenzo Librandi, Feb 07 2017 *)
Formula
2*acot(cos(x)) = Pi/2 + x^2/2! + 2*x^4/4! + x^6/6! - 148*x^8/8! - 3719*x^10/10! -...
2*atan(cos(x)) = Pi/2 - x^2/2! - 2*x^4/4! - x^6/6! + 148*x^8/8! + 3719*x^10/10! +...
G.f. sin(x)/(1 - 1/2*sin(x)^2) = x + 2*x^3/3! + x^5/5! - 148*x^7/7! - ... - Peter Bala, Feb 06 2017
Extensions
More terms from Harvey P. Dale, Nov 17 2014
Signs of the data entries corrected by Peter Bala, Feb 06 2017
Comments