cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A101931 Number of primitive Pythagorean triples with hypotenuse < 10^n.

Original entry on oeis.org

1, 16, 158, 1593, 15919, 159139, 1591579, 15915492, 159154994, 1591549475, 15915494180, 159154943063, 1591549430580, 15915494309496, 159154943089963, 1591549430916326, 15915494309190251, 159154943091887752, 1591549430918979115
Offset: 1

Views

Author

Eric W. Weisstein, Dec 21 2004

Keywords

Comments

The ratio a(n)/10^n as n->inf is 1/(2*Pi) = 0.15915... (Lehmer). - Tito Piezas III, Aug 11 2006

Examples

			a(1)=1 because there is one primitive solution (a,b,c) as (3,4,5) with c<10^1.
		

Crossrefs

Programs

  • PARI
    a(n)=my(t,lim=10^n);for(m=2,sqrtint(lim-1),forstep(n=1+m%2,min(sqrtint(lim-m^2),m-1),2,if(gcd(m,n)==1,t++)));t \\ Charles R Greathouse IV, Sep 13 2012

Extensions

More terms from Jan Feitsma and Bart Dopheide (dopheide(AT)fmf.nl), Mar 10 2005
a(10)-a(11) from Charles R Greathouse IV, Sep 14 2012
a(12) from Charles R Greathouse IV, Oct 15 2012
a(13)-a(19) from Hiroaki Yamanouchi, Jul 14 2014

A101930 Number of Pythagorean triples with hypotenuse <= 10^n.

Original entry on oeis.org

2, 52, 881, 12471, 161436, 1980642, 23471475, 271360653, 3080075432, 34465432859, 381301109919, 4179478903392, 45459467009968, 491241450001328, 5278882299478796, 56453500988940615, 601181789833245631, 6378285697775544230
Offset: 1

Views

Author

Eric W. Weisstein, Dec 21 2004

Keywords

Crossrefs

Cf. A101929.

Programs

  • PARI
    a(n)=my(t,lim=10^n);for(m=2,sqrtint(lim-1),forstep(n=1+m%2,min(sqrtint(lim-m^2),m-1),2,if(gcd(m,n)==1,t+=lim\(m^2+n^2))));t \\ Charles R Greathouse IV, Sep 13 2012

Formula

a(n) = A101929(n) + n. - Robert G. Wilson v, Mar 20 2014

Extensions

Corrected by Todd Stedl (tstedl(AT)speakeasy.net), Jan 15 2005
More terms from Jan Feitsma and Bart Dopheide (dopheide(AT)fmf.nl), Mar 10 2005
a(10)-a(11) from Charles R Greathouse IV, Sep 14 2012
a(12) from Charles R Greathouse IV, Oct 15 2012
a(13)-a(17) from Hiroaki Yamanouchi, Jul 14 2014
a(18) from Matan M. Atzmoni, Feb 04 2023

A239581 Number of primitive Pythagorean triangles (x, y, z) with legs x < y < 10^n.

Original entry on oeis.org

1, 18, 179, 1788, 17861, 178600, 1786011, 17860355, 178603639, 1786036410, 17860362941
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side lengths x, y, z forming a Pythagorean triple (x, y, z). It is called primitive, if gcd(x, y, z) = 1.
Because (x, y, z) is equivalent to (y, x, z), the total number of primitive Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 2, 36, 358, 3576, 35722, ...

Examples

			a(1) = 1, because the only primitive Pythagorean triangle with x < y < 10 is [3, 4, 5].
		

Crossrefs

Extensions

a(6)-a(11) from Giovanni Resta, Mar 27 2014

A239744 Number of Pythagorean triangles (x, y, z) with legs x < y <= 10^n.

Original entry on oeis.org

2, 63, 1034, 14474, 185864, 2269788, 26809924, 309224756, 3503496007, 39147452729, 432599522197
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side lengths x, y, z forming a Pythagorean triple (x, y, z).
Because (x, y, z) is equivalent to (y, x, z), the total number of Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 4, 126, 2068, 28948, 371728, ...

Examples

			a(1) = 2, because the only two Pythagorean triangles with x < y < 10 are [3, 4, 5] and [6, 8, 10].
		

Crossrefs

Extensions

a(6)-a(11) from Giovanni Resta, Mar 27 2014

A239786 Number of Pythagorean triangles (x, y, z) with legs x < y < 10^n.

Original entry on oeis.org

2, 62, 1032, 14471, 185860, 2269783, 26809918, 309224749, 3503495999, 39147452720, 432599522187
Offset: 1

Views

Author

Martin Renner, Mar 26 2014

Keywords

Comments

A Pythagorean triangle is a right triangle with integer side length x, y, z forming a Pythagorean triple (x, y, z).
Because (x, y, z) is equivalent to (y, x, z), the total number of Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 4, 124, 2064, 28942, ...

Crossrefs

Extensions

a(5)-a(11) from Giovanni Resta, Mar 27 2014

A299706 Number of Pythagorean triples with perimeter <= 10^n.

Original entry on oeis.org

0, 17, 325, 4858, 64741, 808950, 9706567, 113236940, 1294080089, 14557915466
Offset: 1

Views

Author

Seiichi Manyama, Feb 26 2018

Keywords

Examples

			n = 2
perimeter | Pythagorean triple
-------------------------------
   12     | [ 3,  4,  5]
   30     | [ 5, 12, 13]
   24     | [ 6,  8, 10]
   56     | [ 7, 24, 25]
   40     | [ 8, 15, 17]
   36     | [ 9, 12, 15]
   90     | [ 9, 40, 41]
   60     | [10, 24, 26]
   48     | [12, 16, 20]
   84     | [12, 35, 37]
   60     | [15, 20, 25]
   90     | [15, 36, 39]
   80     | [16, 30, 34]
   72     | [18, 24, 30]
   70     | [20, 21, 29]
   84     | [21, 28, 35]
   96     | [24, 32, 40]
		

Crossrefs

Programs

  • Ruby
    def f(a, b, c, n)
      return 0 if a + b + c > n
      s = n / (a + b + c)
      s += f( a - 2 * b + 2 * c,  2 * a - b + 2 * c,  2 * a - 2 * b + 3 * c, n)
      s += f( a + 2 * b + 2 * c,  2 * a + b + 2 * c,  2 * a + 2 * b + 3 * c, n)
      s += f(-a + 2 * b + 2 * c, -2 * a + b + 2 * c, -2 * a + 2 * b + 3 * c, n)
      return s
    end
    def A299706(n)
      (1..n).map{|i| f(3, 4, 5, 10 ** i)}
    end
    p A299706(8)
Showing 1-6 of 6 results.