cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A101994 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are all primes.

Original entry on oeis.org

45, 13410, 15855, 31710, 31785, 63570, 74025, 85230, 151830, 202635, 267300, 280665, 399675, 405405, 455250, 466560, 478170, 480240, 511335, 534600, 539475, 561330, 569520, 589305, 666945, 716460, 743160, 748215, 766785, 799350, 860835
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 45 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1) && isprime(64*k-1); \\ Amiram Eldar, May 13 2024

A101995 Primes of the form 4*k-1 such that 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

179, 53639, 63419, 126839, 127139, 254279, 296099, 340919, 607319, 810539, 1069199, 1122659, 1598699, 1621619, 1820999, 1866239, 1912679, 1920959, 2045339, 2138399, 2157899, 2245319, 2278079, 2357219, 2667779, 2865839
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 179 is a term.
		

Crossrefs

Programs

  • Mathematica
    4 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101994(n) - 1. - Amiram Eldar, May 13 2024

A101996 Primes of the form 8*k-1 such that 4*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

359, 107279, 126839, 253679, 254279, 508559, 592199, 681839, 1214639, 1621079, 2138399, 2245319, 3197399, 3243239, 3641999, 3732479, 3825359, 3841919, 4090679, 4276799, 4315799, 4490639, 4556159, 4714439, 5335559, 5731679
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 359 is a term.
		

Crossrefs

Programs

  • Mathematica
    8#-1&/@Select[Range[720000],AllTrue[{4,8,16,32,64}#-1,PrimeQ]&] (* Harvey P. Dale, Jan 17 2023 *)
    Select[Table[2^Range[2,6] n-1,{n,750000}],AllTrue[#,PrimeQ]&][[;;,2]] (* Harvey P. Dale, Jun 03 2023 *)
  • PARI
    is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 8*A101994(n) - 1 = 2*A101995(n) + 1. - Amiram Eldar, May 13 2024

Extensions

Corrected by T. D. Noe, Nov 15 2006

A101997 Primes of the form 16*k-1 such that 4*k-1, 8*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

719, 214559, 253679, 507359, 508559, 1017119, 1184399, 1363679, 2429279, 3242159, 4276799, 4490639, 6394799, 6486479, 7283999, 7464959, 7650719, 7683839, 8181359, 8553599, 8631599, 8981279, 9112319, 9428879, 10671119
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 719 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[With[{c=2^Range[2,6]},Table[c n-1,{n,700000}]],AllTrue[#,PrimeQ]&][[All,3]] (* Harvey P. Dale, Nov 29 2018 *)
  • PARI
    is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 16*A101994(n) - 1 = 4*A101995(n) + 3 = 2*A101996(n) + 1. - Amiram Eldar, May 13 2024

A101998 Primes of the form 32*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

1439, 429119, 507359, 1014719, 1017119, 2034239, 2368799, 2727359, 4858559, 6484319, 8553599, 8981279, 12789599, 12972959, 14567999, 14929919, 15301439, 15367679, 16362719, 17107199, 17263199, 17962559, 18224639, 18857759
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 1439 is a term.
		

Crossrefs

Subsequence of A127578 and A101798.

Programs

  • Mathematica
    32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 32*A101994(n) - 1 = 8*A101995(n) + 7 = 4*A101996(n) + 3 = 2*A101997(n) + 1. - Amiram Eldar, May 13 2024
Showing 1-5 of 5 results.