A101842 Triangle read by rows: T(n,k), for k=-n..n-1, is the scaled (by 2^n n!) probability that the sum of n uniform [-1, 1] variables is between k and k+1.
1, 1, 1, 3, 3, 1, 1, 7, 16, 16, 7, 1, 1, 15, 61, 115, 115, 61, 15, 1, 1, 31, 206, 626, 1056, 1056, 626, 206, 31, 1, 1, 63, 659, 2989, 7554, 11774, 11774, 7554, 2989, 659, 63, 1, 1, 127, 2052, 13308, 47349, 105099, 154624, 154624, 105099, 47349, 13308, 2052, 127, 1, 1, 255, 6297, 56935, 274677
Offset: 1
Examples
Triangle of T(n,k), k=-n..n-1 begins: 1, 1 1, 3, 3, 1 1, 7, 16, 16, 7, 1 1, 15, 61, 115, 115, 61, 15, 1 1, 31, 206, 626, 1056, 1056, 626, 206, 31, 1 1, 63, 659, 2989, 7554, 11774, 11774, 7554, 2989, 659, 63, 1 The sequence of polynomials starts: p(0, x) = 1 p(1, x) = x + 1 p(2, x) = x^3 + 3*x^2 + 3*x + 1 p(3, x) = x^5 + 7*x^4 + 16*x^3 + 16*x^2 + 7*x + 1 p(4, x) = x^7 + 15*x^6 + 61*x^5 + 115*x^4 + 115*x^3 + 61*x^2 + 15*x + 1
References
- Peter Doyle, Myths about card shuffling, talk given at DIMACS Workshop on Puzzling Mathematics and Mathematical Puzzles: a Gathering in Honor of Peter Winkler's 60th Birthday, Rutgers University, Jun 08, 2007
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..2070 for rows 1..45 of flattened triangle
- R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math. 27 (2001), 210-224.
- R. Stanley, Eulerian partitions of a unit hypercube, in Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht/Boston, 1977, p. 49.
Programs
-
Maple
gf := (1 - x)/(exp((x + 1)*z) - x): ser := series(gf, z, 12): for n from 0 to 6 do p := simplify(n!*(x - 1)^n*coeff(ser,z, n)); print(PolynomialTools:-CoefficientList(p, x)) od: # Peter Luschny, Jun 24 2019
-
Mathematica
T[n_, k_] /; -n <= k <= n-1 := T[n, k] = (n-k) T[n-1, k-1] + T[n-1, k] + (n+k+1) T[n-1, k+1]; T[1, -1] = T[1, 0] = 1; T[, ] = 0; Table[T[n, k], {n, 1, 8}, {k, -n, n-1}] (* Jean-François Alcover, Jun 27 2019 *)
-
PARI
{T(n,k) = polcoeff( n!*polcoeff( -1 + (1-y) / (1 - y*exp( (1-y^2)*x +x*O(x^n) )) ,n,x),k,y)} for(n=1,10,for(k=1,2*n,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Jan 03 2017
Formula
T(n,k) = (n-k) * T(n-1,k-1) + T(n-1,k) + (n+k+1)*T(n-1,k+1).
With the column index k starting at 0 the table entries appear to be given by t(n,k) = Sum_{i = 0..k} A173018(n,i)*binomial(n,k-i), n >= 1. - Peter Bala, Jul 17 2012
E.g.f.: -1 + (1-y) / (1 - y*exp( (1-y^2)*x )). - Paul D. Hanna, Jan 03 2017
p(n, x) = n! * (x - 1)^n * [z^n] (1 - x)/(exp((x + 1)*z) - x) defines a sequence of polynomials. p(n, x) = (x + 1)^n*A(n, x) where A(n, x) are the Eulerian polynomials as defined by A008292. The coefficients of these polynomials are the T(n, k) if enumerated for n >= 0 and 0 <= k <= 2*n - 1 if n > 0 and T(0,0) = 1. - Peter Luschny, Jun 24 2019
Extensions
Terms a(57) and beyond from Paul D. Hanna, Jan 03 2017
Comments