A102071 Pairwise sums of general ballot numbers (A002026).
1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037, 98123, 268737, 739833, 2046207, 5682915, 15842505, 44315637, 124348275, 349911204, 987212856, 2791964574, 7913642086, 22477090679, 63964370301, 182353459733, 520735012027, 1489362193002, 4266018891562, 12236183875496, 35142703099692, 101055137177563
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Gennady Eremin, Naturalized bracket row and Motzkin triangle, arXiv:2004.09866 [math.CO], 2020. See Table 2.
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(4x(1+x))/(1-x+Sqrt[1-2x-3x^2])^2,{x,0,40}],x] (* Harvey P. Dale, Feb 26 2013 *)
-
Maxima
a(n):=1/n*sum((binomial(j,n-1-j)+4*binomial(j,n-2-j)+3*binomial(j,n-3-j))*binomial(n,j),j,0,n); /* Vladimir Kruchinin, Mar 08 2016 */
-
PARI
z='z+O('z^66); Vec(4*z*(1+z)/(1-z+sqrt(1-2*z-3*z^2))^2) \\ Joerg Arndt, Mar 08 2016
Formula
G.f.: (4*x*(1+x))/(1-x+sqrt(1-2*x-3*x^2))^2.
a(n) = (1/n) * Sum_{j=0..n} ((binomial(j,n-1-j)+4*binomial(j,n-2-j) + 3*binomial(j,n-3-j))*binomial(n,j)). - Vladimir Kruchinin, Mar 08 2016
a(n) ~ 4*3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2016
D-finite with recurrence (n+3)*a(n) + (-3*n-5)*a(n-1) + (-n+3)*a(n-2) + 3*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 01 2021
From Peter Bala, Feb 02 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A002057(k).
G.f.: x/(1 + x)*c(x/(1 + x))^4, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)