cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102071 Pairwise sums of general ballot numbers (A002026).

Original entry on oeis.org

1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037, 98123, 268737, 739833, 2046207, 5682915, 15842505, 44315637, 124348275, 349911204, 987212856, 2791964574, 7913642086, 22477090679, 63964370301, 182353459733, 520735012027, 1489362193002, 4266018891562, 12236183875496, 35142703099692, 101055137177563
Offset: 1

Views

Author

Ralf Stephan, Dec 30 2004

Keywords

Crossrefs

First differences of A005554. Partial sums of A026269. 3rd column of A348840.

Programs

  • Mathematica
    CoefficientList[Series[(4x(1+x))/(1-x+Sqrt[1-2x-3x^2])^2,{x,0,40}],x] (* Harvey P. Dale, Feb 26 2013 *)
  • Maxima
    a(n):=1/n*sum((binomial(j,n-1-j)+4*binomial(j,n-2-j)+3*binomial(j,n-3-j))*binomial(n,j),j,0,n); /* Vladimir Kruchinin, Mar 08 2016 */
    
  • PARI
    z='z+O('z^66); Vec(4*z*(1+z)/(1-z+sqrt(1-2*z-3*z^2))^2) \\ Joerg Arndt, Mar 08 2016

Formula

G.f.: (4*x*(1+x))/(1-x+sqrt(1-2*x-3*x^2))^2.
a(n) = (1/n) * Sum_{j=0..n} ((binomial(j,n-1-j)+4*binomial(j,n-2-j) + 3*binomial(j,n-3-j))*binomial(n,j)). - Vladimir Kruchinin, Mar 08 2016
a(n) ~ 4*3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2016
a(n) = A001006(n+1) - A001006(n-1). - Gennady Eremin, Sep 23 2021
D-finite with recurrence (n+3)*a(n) + (-3*n-5)*a(n-1) + (-n+3)*a(n-2) + 3*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 01 2021
From Peter Bala, Feb 02 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A002057(k).
G.f.: x/(1 + x)*c(x/(1 + x))^4, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)