A102080 Number of matchings in the C_n X P_2 (n-prism) graph.
2, 12, 32, 108, 342, 1104, 3544, 11396, 36626, 117732, 378424, 1216380, 3909830, 12567448, 40395792, 129844996, 417363330, 1341539196, 4312135920, 13860583628, 44552347606, 143205490528, 460308235560, 1479577849604, 4755836293842, 15286778495572
Offset: 1
Examples
a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings: (i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (Eq. (23) and Table IV).
- Eric Weisstein's World of Mathematics, Independent Edge Set.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,4,0,-1).
Programs
-
GAP
a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019 -
Maple
a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
-
Mathematica
Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}] LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *) CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
-
PARI
Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
-
Sage
def A102080_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list() a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
Formula
G.f.: 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)). - Corrected by Colin Barker, Jan 28 2017
a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for n>4.
Comments