cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102080 Number of matchings in the C_n X P_2 (n-prism) graph.

Original entry on oeis.org

2, 12, 32, 108, 342, 1104, 3544, 11396, 36626, 117732, 378424, 1216380, 3909830, 12567448, 40395792, 129844996, 417363330, 1341539196, 4312135920, 13860583628, 44552347606, 143205490528, 460308235560, 1479577849604, 4755836293842, 15286778495572
Offset: 1

Views

Author

Emeric Deutsch, Dec 29 2004

Keywords

Comments

C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices.
a(n) = sum of row n in A102079.
Prism graphs are defined for n>=3; extended to n=1 using closed form.
Also the Hosoya index of the n-prism graph Y_n. - Eric W. Weisstein, Jul 11 2011

Examples

			a(3)=32 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following matchings:
(i) the empty set (1 matching), (ii) any edge (9 matchings), (iii) any two edges from the set {AA',BB',CC'} (3 matchings), (iv) the members of the Cartesian product of {AB,AC,BC}and {A'B',A'C',B'C'} (9 matchings), (v) {AA',BC}, {AA',B'C'}and four more obtained by circular permutations (6 matchings), (vi) {AA',BC,B'C'} and two more obtained by circular permutations (3 matchings), (vii) {AA',BB',CC'} (1 matching).
		

Crossrefs

Column 2 of A287428.

Programs

  • GAP
    a:=[2,12,32,108];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    a[2]:=12: a[3]:=32: a[4]:=108: a[5]:=342: for n from 6 to 30 do a[n]:=2*a[n-1]+4*a[n-2]-a[n-4] od:seq(a[n],n=2..27);
  • Mathematica
    Table[(-1)^n + RootSum[1 - # - 3 #^2 + #^3 &, #^n &], {n, 30}]
    LinearRecurrence[{2, 4, 0, -1}, {2, 12, 32, 108}, 20] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[2(1+4x-2x^3)/(1-2x-4x^2+x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    Vec(2*x*(1+4*x-2*x^3) / ((1+x)*(1-3*x-x^2+x^3)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • Sage
    def A102080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3))).list()
    a=A102080_list(30); a[1:] # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: 2*x*(1+4*x-2*x^3)/((1+x)*(1-3*x-x^2+x^3)). - Corrected by Colin Barker, Jan 28 2017
a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4) for n>4.
a(n) = A033505(n) - 7*A033505(n-2) - (-1)^n. - Ralf Stephan, May 17 2007