A102083 a(n) = 8*n^2 + 4*n + 1.
1, 13, 41, 85, 145, 221, 313, 421, 545, 685, 841, 1013, 1201, 1405, 1625, 1861, 2113, 2381, 2665, 2965, 3281, 3613, 3961, 4325, 4705, 5101, 5513, 5941, 6385, 6845, 7321, 7813, 8321, 8845, 9385, 9941, 10513, 11101, 11705, 12325, 12961, 13613, 14281, 14965, 15665
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[8*n^2 + 4*n + 1, {n, 0, 300}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 13, 41}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
-
PARI
a(n)=8*n^2+4*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (1+10*x+5*x^2)/(1-x)^3. - Paul Barry, Jun 04 2005
a(n) = 4*(4*n-1)+a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 16 2010
E.g.f.: (8*x^2 + 12*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
Comments