cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102250 Indices of semiprime Haüy rhombic dodecahedral numbers.

Original entry on oeis.org

2, 3, 4, 6, 12, 15, 16, 22, 34, 36, 51, 66, 87, 99, 100, 106, 117, 139, 141, 159, 166, 169, 174, 177, 180, 192, 201, 205, 232, 274, 282, 307, 337, 339, 342, 367, 370, 372, 379, 381, 411, 412, 429, 430, 432, 439, 444, 454, 460, 471, 477, 507, 510, 517, 555, 577
Offset: 1

Views

Author

Jonathan Vos Post, Feb 18 2005

Keywords

Comments

Because the Haüy rhombic dodecahedral numbers are A046142(n) = (2*n-1)(8*n^2-14*n+7) no Haüy rhombic dodecahedral number can be prime.
Integers n such that both (2*n-1) and (8*n^2-14*n+7) are primes.
Integers n such that (2*n-1)*(8*n^2-14*n+7) is an element in the intersection of A046142 and A001358.

Examples

			a(3) = 4 because the 3rd Haüy rhombic dodecahedral number is A046142(3) = (2*4-1)(8*4^2-14*4+7) = 553 and because 553 = 7 * 79 is a semiprime.
		

References

  • R.-J. Haüy, Essai d'une théorie sur la structure des crystaux appliquée à plusieurs genres de substances crystallisées, 1784.
  • H. Steinhaus, Mathematical Snapshots, 3rd ed. New York: Dover, pp. 185-186, 1999.

Crossrefs

Programs

  • Magma
    [n: n in [0..600] | IsPrime(2*n-1) and IsPrime(8*n^2-14*n+7)]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    Select[ Range[1000], PrimeQ[2# - 1] && PrimeQ[8#^2 - 14# + 7] &]
    Select[Range[1000],AllTrue[{2#-1,8#^2-14#+7},PrimeQ]&] (* Harvey P. Dale, Apr 13 2025 *)
Showing 1-1 of 1 results.