cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102271 Primes of the form 3*x^2 + 7*y^2.

Original entry on oeis.org

3, 7, 19, 31, 103, 139, 199, 223, 271, 283, 307, 367, 439, 523, 607, 619, 643, 691, 727, 787, 811, 859, 1039, 1063, 1123, 1231, 1279, 1291, 1399, 1447, 1459, 1483, 1531, 1543, 1567, 1627, 1699, 1783, 1867, 1879, 1951, 1987, 2131, 2203, 2239, 2287, 2371, 2383
Offset: 1

Views

Author

N. J. A. Sloane, Feb 19 2005

Keywords

Comments

Primes p such that Q(sqrt(-21p)) has genus characters chi_{-3} = +1, chi_{-7} = -1.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 84 in [3, 7, 19, 31, 55]]; // Vincenzo Librandi, Jul 19 2012
    
  • Mathematica
    m=3; n=7; pLst={}; lim=3000; xMax=Sqrt[lim/m]; yMax=Sqrt[lim/n]; Do[p=m*x^2+n*y^2; If[pT. D. Noe, May 05 2005 *)
    QuadPrimes2[3, 0, 7, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\7), if(isprime(t=w+7*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {3, 7, 19, 31, 55} (mod 84). - T. D. Noe, May 02 2008