A102290 Total number of even lists in all sets of lists, cf. A000262.
0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0
Links
Programs
-
Magma
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >; [0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
-
Maple
Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch # second Maple program: b:= proc(n) option remember; `if`(n=0, [1, 0], add( (p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)* binomial(n-1, j-1)*j!), j=1..n)) end: a:= n-> b(n, 0)[2]: seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Mathematica
Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *) Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
Sage
[0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
Formula
E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021
Extensions
More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016