cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102290 Total number of even lists in all sets of lists, cf. A000262.

Original entry on oeis.org

0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
  • Maple
    Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
            binomial(n-1, j-1)*j!), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
    Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
    

Formula

E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021

Extensions

More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016