A102307 a(n) = Fibonacci(2n+1) * binomial(2n,n).
1, 4, 30, 260, 2380, 22428, 215292, 2093520, 20553390, 203280220, 2022339176, 20215564824, 202879303900, 2042865050800, 20629119101400, 208829908532880, 2118554718825420, 21533269718832300, 219235457827640100, 2235446059461106800, 22824647678376163620, 233331794241184490280
Offset: 0
Keywords
Examples
a(0) = F(1)*C(0,0) = 1*1 = 1; a(1) = F(3)*C(2,1) = 2*2 = 4; a(2) = F(5)*C(4,2) = 5*6 = 30; a(3) = F(7)*C(6,3) = 13*20 = 260; ...
Programs
-
Mathematica
Table[Fibonacci[2n+1]Binomial[2n,n],{n,0,20}] (* Harvey P. Dale, Aug 03 2016 *)
-
PARI
a(n)=fibonacci(2*n+1)*binomial(2*n,n)
Formula
a(n) = Fibonacci(2n+1) * binomial(2n,n) = A000045(2n+1) * A000984(n). - Philippe Deléham, Oct 14 2006
a(n) = A016095(n,n).
Sum_{n>=0} a(n)/16^n = 2*sqrt(10+2*sqrt(5))/5. - Amiram Eldar, May 06 2023
G.f.: sqrt(3-8*x+2*sqrt(1-12*x+16*x^2))/(sqrt(5)*sqrt(1-12*x+16*x^2)). - Vladimir Kruchinin, Apr 30 2024
Comments