A102316
Triangle, read by rows, where T(n,k) = T(n,k-1) + (k+1)*T(n-1,k) for n>k>0, T(n,0)=1 and T(n,n) = T(n,n-1) for n>=0.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 7, 16, 16, 1, 15, 63, 127, 127, 1, 31, 220, 728, 1363, 1363, 1, 63, 723, 3635, 10450, 18628, 18628, 1, 127, 2296, 16836, 69086, 180854, 311250, 311250, 1, 255, 7143, 74487, 419917, 1505041, 3683791, 6173791, 6173791, 1, 511, 21940
Offset: 0
T(5,2) = 220 = 1*1 + 2*15 + 3*63 = 1*T(4,0) + 2*T(4,1) + 3*T(4,2).
T(5,2) = 220 = 31 + 3*63 = T(5,1) + (2+1)*T(4,2).
T(5,3) = 728 = 220 + 4*127 = T(5,2) + (3+1)*T(4,3).
Rows begin:
[1],
[1,1],
[1,3,3],
[1,7,16,16],
[1,15,63,127,127],
[1,31,220,728,1363,1363],
[1,63,723,3635,10450,18628,18628],
[1,127,2296,16836,69086,180854,311250,311250],
[1,255,7143,74487,419917,1505041,3683791,6173791,6173791],...
A102400
Triangle, read by rows, where T(n,k) = Sum_{j=0..k} T(n-1,j)*(j+1)*[(k+1)*(k+2)/2 - j*(j+1)/2] for n>k>0, with T(0,0)=1 and T(n,n) = T(n,n-1) for n>0.
Original entry on oeis.org
1, 1, 1, 1, 7, 7, 1, 31, 139, 139, 1, 127, 1567, 5711, 5711, 1, 511, 15379, 126579, 408354, 408354, 1, 2047, 143527, 2357431, 15333661, 45605881, 45605881, 1, 8191, 1312219, 40769819, 473433344, 2634441290, 7390305396, 7390305396, 1, 32767
Offset: 0
T(4,2) = 1567 = 1*6 + 31*10 + 139*9
= T(3,0)*R(0,2) + T(3,1)*R(1,2) + T(3,2)*R(2,2).
Rows begin:
[1],
[1,1],
[1,7,7],
[1,31,139,139],
[1,127,1567,5711,5711],
[1,511,15379,126579,408354,408354],
[1,2047,143527,2357431,15333661,45605881,45605881],...
where the transpose of the recurrence coefficients given by
[R^t](n,k) = (k+1)*((n+1)*(n+2)/2 - k*(k+1)/2) form triangle:
[1],
[3,4],
[6,10,9],
[10,18,21,16],
[15,28,36,36,25],...
which equals the matrix square of the triangle:
[1],
[1,2],
[1,2,3],
[1,2,3,4],
[1,2,3,4,5],...
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Dec 15 2014, after PARI *)
-
{T(n,k)=if(n
Showing 1-2 of 2 results.
Comments