Original entry on oeis.org
1, 2, 7, 40, 333, 3706, 52128, 891700, 18038217, 422455778, 11265993155, 337573337108, 11241696796572, 412291622024088, 16524941775629068, 719072894898300540, 33777207106037303457, 1704222469853179505170, 91954474204022335742037, 5285317768791730330402208
Offset: 0
-
{a(n)=local(M=matrix(n+1,n+1));for(m=0,n, for(k=0,m, M[m+1,k+1]=if(m==0||k==0,1,M[m+1,k]+(k+1)*M[m,k+1]))); return(sum(i=0,n,M[n+1,i+1]))}
A082161
Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n transient unlabeled states (and a unique absorbing state).
Original entry on oeis.org
1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, 3737431895, 110577492346, 3641313700916, 132214630355700, 5251687490704524, 226664506308709858, 10568175957745041423, 529589006347242691143, 28395998790096299447521
Offset: 1
a(2)=3 since the following transition diagrams represent all three initially connected acyclic automata with two input letters x and y, two transient states 1 (initial) and 2 and the absorbing state 0:
1 == x, y==> 2 == x, y ==> 0 == x, y ==> 0, 1 -- x --> 2 == x, y ==> 0 == x, y ==> 0
1 -- y --> 0
and the last one with x and y interchanged.
- Roland Bacher and Christophe Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
- Vaclav Kotesovec, Table of n, a(n) for n = 1..350
- David Callan, A determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata, arXiv:0704.0004 [math.CO], 2007.
- Manosij Ghosh Dastidar and Michael Wallner, Asymptotics of relaxed k-ary trees, arXiv:2404.08415 [math.CO], 2024. See p. 1.4.
- Andrew Elvey Price, Wenjie Fang, and Michael Wallner, Compacted binary trees admit a stretched exponential, arXiv:1908.11181 [math.CO], 2019-2020; J. Combin. Theory Ser. A 177 (2021), Paper No. 105306, 40 pp.
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic enumeration of compacted binary trees of bounded right height, arXiv:1703.10031 [math.CO], 2017; J. Combin. Theory Ser. A 172 (2020), 105177, 49 pp.
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
- Fedor Petrov, On a generating function and vector ν of length n, answer to question on MathOverflow (2024).
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017-2018; Theoret. Comput. Sci. 755 (2019), 1-12.
-
a[n_]:= a[n]= If[n==0, 1, Coefficient[1-Sum[a[k]*x^k*Product[1-j*x, {j, 1, k+1}], {k, 0, n-1}], x, n]];
Table[a[n], {n, 18}] (* Jean-François Alcover, Dec 15 2014, after Paul D. Hanna *)
-
{a(n)=if(n==0,1,polcoeff(1-sum(k=0,n-1,a(k)*x^k*prod(j=1,k+1,1-j*x+x*O(x^n))),n))} \\ Paul D. Hanna, Jan 07 2005
-
{a(n)=local(A);if(n<1,0,A=x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(1-prod(i=1,k+1,1-i*x))); polcoeff(A,n))} /* Michael Somos, Jan 16 2005 */
-
upto(n) = my(v=vector(n+1, i, i==1)); for(i=1, n, for(j=i+1, n+1, v[j] += i*v[j-1])); v[2..#v] \\ Mikhail Kurkov, Oct 25 2024
-
from functools import cache
@cache
def b(n, k):
if n == 0: return k + 1
return sum(b(j, k)*b(n-j-1, k+j) for j in range(n))
def A082161(n): return b(n, 0)
print([A082161(n) for n in range(1, 19)]) # G. C. Greubel, Jan 18 2024
A102086
Triangular matrix, read by rows, that satisfies: T(n,k) = [T^2](n-1,k) when n>k>=0, with T(n,n) = (n+1).
Original entry on oeis.org
1, 1, 2, 3, 4, 3, 16, 20, 9, 4, 127, 156, 63, 16, 5, 1363, 1664, 648, 144, 25, 6, 18628, 22684, 8703, 1840, 275, 36, 7, 311250, 378572, 144243, 29824, 4200, 468, 49, 8, 6173791, 7504640, 2849400, 582640, 79775, 8316, 735, 64, 9, 142190703, 172785512
Offset: 0
Rows of T begin:
[1],
[1,2],
[3,4,3],
[16,20,9,4],
[127,156,63,16,5],
[1363,1664,648,144,25,6],
[18628,22684,8703,1840,275,36,7],
[311250,378572,144243,29824,4200,468,49,8],
[6173791,7504640,2849400,582640,79775,8316,735,64,9],...
Matrix square T^2 equals T excluding the main diagonal:
[1],
[3,4],
[16,20,9],
[127,156,63,16],
[1363,1664,648,144,25],...
G.f. for column 0: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-3x) + ... + T(n,0)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ...
G.f. for column 1: 2 = 2(1-2x) + 4*x*(1-2x)(1-3x) + 20*x^2*(1-2x)(1-3x)(1-4x) + ... + T(n+1,1)*x^n*(1-2x)(1-3x)(1-4x)*..*(1-(n+2)*x) + ...
G.f. for column 2: 3 = 3(1-3x) + 9*x*(1-3x)(1-4x) + 63*x^2*(1-3x)(1-4x)(1-5x) + ... + T(n+2,2)*x^n*(1-3x)(1-4x)(1-5x)*..*(1-(n+3)*x) + ...
-
{T(n,k)=local(A=matrix(1,1),B);A[1,1]=1; for(m=2,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^2)[i-1,1], B[i,j]=(A^2)[i-1,j]));));A=B);return(A[n+1,k+1])}
-
T[n_, n_] := n+1; T[n_, k_] /; k>n = 0; T[n_, k_] /; k == n-1 := n^2; T[n_, k_] := T[n, k] = Coefficient[1-Sum[T[i, k]*x^i*Product[1-(j+k)*x, {j, 1, i-k+1}], {i, k, n-1}], x, n]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 15 2014, after PARI script *)
-
{T(n,k)=if(n
A102323
Triangle, read by rows, where T(n,k) = T(n,k-1) + (2*k+1)*T(n-1,k) for n>k>0, T(n,0)=1 and T(n,n) = T(n,n-1) for n>=0.
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 13, 33, 33, 1, 40, 205, 436, 436, 1, 121, 1146, 4198, 8122, 8122, 1, 364, 6094, 35480, 108578, 197920, 197920, 1, 1093, 31563, 279923, 1257125, 3434245, 6007205, 6007205, 1, 3280, 161095, 2120556, 13434681, 51211376
Offset: 0
T(5,2) = 1146 = 1*1 + 3*40 + 5*205 = 1*T(4,0) + 3*T(4,1) + 5*T(4,2).
T(5,2) = 1146 = 121 + 5*205 = T(5,1) + (2*2+1)*T(4,2).
T(5,3) = 4198 = 1146 + 7*436 = T(5,2) + (2*3+1)*T(4,3).
Rows begin:
[1],
[1,1],
[1,4,4],
[1,13,33,33],
[1,40,205,436,436],
[1,121,1146,4198,8122,8122],
[1,364,6094,35480,108578,197920,197920],
[1,1093,31563,279923,1257125,3434245,6007205,6007205],...
Showing 1-4 of 4 results.
Comments