cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102339 Numbers k such that k*10^3 + 333 is prime.

Original entry on oeis.org

2, 5, 7, 10, 16, 17, 19, 20, 23, 29, 31, 38, 41, 49, 50, 55, 56, 59, 61, 64, 71, 76, 79, 85, 92, 100, 101, 103, 121, 134, 136, 139, 140, 143, 149, 154, 155, 161, 175, 176, 178, 182, 184, 188, 208, 209, 211, 217, 220, 232, 236, 239, 241, 244, 265, 266, 269, 271, 272, 274, 286, 287, 295, 299, 301, 308
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Comments

10^3 and 333 are relatively prime, therefore by Dirichlet's theorem there are infinitely many primes in the arithmetic progression n*10^3+333. No term of the sequence is of the form 3*k, because 3*k*10^3+333 = 3*(k*10^3+111) is divisible by 3, violating the requirement of the definition. - Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2009

Examples

			If k=2,  then k*10^3 + 333 =  2333 (prime).
If k=49, then k*10^3 + 333 = 49333 (prime).
If k=92, then k*10^3 + 333 = 92333 (prime).
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..700] | IsPrime(Seqint([3,3,3] cat Intseq(n))) ]; // Vincenzo Librandi, Feb 04 2011
    
  • Magma
    [ n: n in [0..320] | IsPrime(n*10^3+333) ]; // Klaus Brockhaus, May 20 2009
    
  • Mathematica
    Select[Range[400],PrimeQ[FromDigits[Join[IntegerDigits[#],{3,3,3}]]]&] (* Harvey P. Dale, Oct 14 2014 *)
    Select[Range[0, 1000], PrimeQ[1000 # + 333] &] (* Vincenzo Librandi, Jan 19 2013 *)
  • PARI
    is(n)=isprime(1000*n+333) \\ Charles R Greathouse IV, Jun 06 2017