A102345 a(n) = 3^n + (-1)^n.
2, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2095
- Weerayuth Nilsrakoo and Achariya Nilsrakoo, On One-Parameter Generalization of Jacobsthal Numbers, WSEAS Trans. Math. (2025) Vol. 24, 51-61. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Programs
-
Mathematica
Table[3^n+(-1)^n,{n,0,30}] (* or *) LinearRecurrence[{2,3},{2,2},30] (* Harvey P. Dale, Jun 19 2016 *)
-
Sage
[lucas_number2(n,2,-3) for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
Formula
a(n) = 2*a(n-1) + 3*a(n-2).
From Elmo R. Oliveira, Dec 18 2023: (Start)
G.f.: 2*(1-x)/((1+x)*(1-3*x)).
E.g.f.: exp(-x) + exp(3*x).
a(n) = 2*A046717(n). (End)
Comments