cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102364 Number of terms in Fibonacci sequence less than n not used in Zeckendorf representation of n (the Zeckendorf representation of n is a sum of non-consecutive distinct Fibonacci numbers).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 2, 2, 4, 3, 3, 3, 2, 5, 4, 4, 4, 3, 4, 3, 3, 6, 5, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5, 5, 4, 6, 5, 5, 5, 4, 5, 4, 4, 8, 7, 7, 7, 6, 7, 6, 6, 7, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 5, 5, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5
Offset: 0

Views

Author

Casey Mongoven, Feb 22 2005

Keywords

Comments

Number of 0's in Zeckendorf-binary representation of n. For example, the Zeckendorf representation of 12 is 8+3+1, which is 10101 in binary notation.
For n > 0: number of zeros in n-th row of A213676, or, number of zeros in n-th row of A189920. - Reinhard Zumkeller, Mar 10 2013

References

  • E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Programs

  • Haskell
    a102364 0 = 0
    a102364 n = length $ filter (== 0) $ a213676_row n
    -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n) option remember; local j;
          if n=0 then 0
        else for j from 2 while F(j+1)<=n do od;
             b(n-F(j))+2^(j-2)
          fi
        end:
    a:= proc(n) local c,m;
          c, m:= 0, b(n);
          while m>0 do c:= c +1 -irem(m, 2, 'm');
          od; c
        end:
    seq(a(n), n=0..150);  # Alois P. Heinz, May 18 2012
  • Mathematica
    F = Fibonacci; b[n_] := b[n] = Module[{j}, If[n==0, 0, For[j=2, F[j+1] <= n, j++]; b[n-F[j]]+2^(j-2)]]; a[n_] := Module[{c, m}, {c, m} = {0, b[n]}; While[m>0, c = c + 1 - Mod[m, 2]; m = Floor[m/2]]; c]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)