A102364 Number of terms in Fibonacci sequence less than n not used in Zeckendorf representation of n (the Zeckendorf representation of n is a sum of non-consecutive distinct Fibonacci numbers).
0, 0, 1, 2, 1, 3, 2, 2, 4, 3, 3, 3, 2, 5, 4, 4, 4, 3, 4, 3, 3, 6, 5, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5, 5, 4, 6, 5, 5, 5, 4, 5, 4, 4, 8, 7, 7, 7, 6, 7, 6, 6, 7, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 5, 5, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5
Offset: 0
Keywords
References
- E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
- Ron Knott, General Fibonacci Series
Programs
-
Haskell
a102364 0 = 0 a102364 n = length $ filter (== 0) $ a213676_row n -- Reinhard Zumkeller, Mar 10 2013
-
Maple
F:= combinat[fibonacci]: b:= proc(n) option remember; local j; if n=0 then 0 else for j from 2 while F(j+1)<=n do od; b(n-F(j))+2^(j-2) fi end: a:= proc(n) local c,m; c, m:= 0, b(n); while m>0 do c:= c +1 -irem(m, 2, 'm'); od; c end: seq(a(n), n=0..150); # Alois P. Heinz, May 18 2012
-
Mathematica
F = Fibonacci; b[n_] := b[n] = Module[{j}, If[n==0, 0, For[j=2, F[j+1] <= n, j++]; b[n-F[j]]+2^(j-2)]]; a[n_] := Module[{c, m}, {c, m} = {0, b[n]}; While[m>0, c = c + 1 - Mod[m, 2]; m = Floor[m/2]]; c]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
Comments