A102365 Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938.
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 15, 1, 0, 1, 58, 129, 37, 1, 0, 1, 179, 877, 646, 83, 1, 0, 1, 543, 5280, 8030, 2685, 177, 1, 0, 1, 1636, 29658, 82610, 56285, 10002, 367, 1, 0, 1, 4916, 159742, 756218, 919615, 335162, 34777, 749, 1, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 5, 1, 0; 1, 18, 15, 1, 0; 1, 58, 129, 37, 1, 0; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)
Formula
T(n, k) = (n-k)*T(n-1, k-1) + (2*k+1)*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0.
Sum_{k>=0} T(n, k)*2^k = A001147(n).
Sum_{k>=0} T(n, k) = A014307(n). - Philippe Deléham, Mar 19 2005
Comments