cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102430 Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1.

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 6, 3, 2, 2, 2, 6, 3, 2, 2, 2, 2, 10, 3, 3, 2, 2, 2, 2, 10, 5, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 26, 7, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Marc LeBrun, Jan 08 2005

Keywords

Comments

All entries above main diagonal are = 1.

Examples

			The T(9,3)=5 partitions of 9 into powers of 3: 111111111, 1111113, 11133, 333, 9.
From _Gus Wiseman_, Jun 07 2019: (Start)
Triangle begins:
   2
   2  2
   4  2  2
   4  2  2  2
   6  3  2  2  2
   6  3  2  2  2  2
  10  3  3  2  2  2  2
  10  5  3  2  2  2  2  2
  14  5  3  3  2  2  2  2  2
  14  5  3  3  2  2  2  2  2  2
  20  7  4  3  3  2  2  2  2  2  2
  20  7  4  3  3  2  2  2  2  2  2  2
  26  7  4  3  3  3  2  2  2  2  2  2  2
  26  9  4  4  3  3  2  2  2  2  2  2  2  2
  36  9  6  4  3  3  3  2  2  2  2  2  2  2  2
  36  9  6  4  3  3  3  2  2  2  2  2  2  2  2  2
  46 12  6  4  4  3  3  3  2  2  2  2  2  2  2  2  2
Row n = 8 counts the following partitions:
  8          3311       44         5111       611        71         8
  44         311111     41111      11111111   11111111   11111111   11111111
  422        11111111   11111111
  2222
  4211
  22211
  41111
  221111
  2111111
  11111111
(End)
		

Crossrefs

Same as A308558 except for the k = 1 column.
Row sums are A102431.
First column (k = 2) is A018819.
Second column (k = 3) is A062051.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1, k)+(p-> `if`(p>n, 0, b(n-p, i, k)))(k^i)))
        end:
    T:= (n, k)-> b(n, ilog[k](n), k):
    seq(seq(T(n, k), k=2..n), n=2..20);  # Alois P. Heinz, Oct 12 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]],{n,2,10},{k,2,n}] (* Gus Wiseman, Jun 07 2019 *)

Formula

T(1, k) = 1, T(n, 1) = choose(2n-1, n), T(n>1, k>1) = T(n-1, k) + (T(n/k, k) if k divides n, else 0)

Extensions

Corrected and rewritten by Gus Wiseman, Jun 07 2019