Original entry on oeis.org
2, 4, 8, 10, 15, 17, 24, 28, 35, 37, 49, 51, 60, 65, 80, 82, 99, 101, 121, 127, 144, 146, 176, 180, 203, 211, 243, 245, 283, 285, 328, 336, 375, 380, 443, 445, 494, 504, 574, 576, 650, 652, 733, 748, 825, 827, 942, 946, 1047, 1059, 1181, 1183, 1316, 1322, 1473
Offset: 2
a(3)=4 partitions of 3 into powers of 2 or 3: 3.2^0, 1.2^0+1.2^1, 3.3^0, 1.3^1
A101417
Number of partitions of n into parts without powers of 2.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
Offset: 0
a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6.
From _Gus Wiseman_, Jan 07 2019: (Start)
The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14):
(3) (5) (6) (7) (53) (9) (A) (B) (C) (D) (E)
(33) (63) (55) (65) (66) (76) (77)
(333) (73) (533) (75) (A3) (95)
(93) (553) (B3)
(633) (733) (653)
(3333) (5333)
(End)
-
g:= product(1-x^(2^j),j=0..15)/product(1-x^i,i=1..75): gser:= series(g, x=0,62): seq(coeff(gser,x,n),n=0..59); # Emeric Deutsch, Mar 29 2006
-
Table[Length[Select[IntegerPartitions[n],And@@Not/@IntegerQ/@Log[2,#]&]],{n,20}] (* Gus Wiseman, Jan 07 2019 *)
A072721
Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0
a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C)
(22) (33) (44) (333) (55) (66)
(42) (422) (82) (84)
(222) (2222) (442) (93)
(4222) (444)
(22222) (822)
(3333)
(4422)
(42222)
(222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
Cf.
A018819,
A023894,
A052410,
A072720,
A072721,
A102430,
A175082,
A322900,
A322902,
A322903,
A322968.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
A072720
Number of partitions of n into parts which are each powers of a single number (which may vary between partitions).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 34, 35, 43, 47, 57, 58, 73, 74, 91, 96, 112, 113, 139, 141, 163, 168, 197, 198, 235, 236, 272, 279, 317, 321, 378, 379, 427, 436, 501, 502, 575, 576, 653, 666, 742, 743, 851, 853, 952, 963, 1080, 1081, 1211, 1216, 1361
Offset: 0
a(6)=10 since 6 can be written as 6 (powers of 6), 5+1 (5), 4+1+1 (4 or 2), 3+3 (3), 3+1+1+1 (3), 4+2 (2), 2+2+2 (2), 2+2+1+1 (2), 2+1+1+1+1 (2) and 1+1+1+1+1+1 (powers of anything).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@DeleteCases[#,1]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
A322900
Number of integer partitions of n whose parts are all proper powers of the same number.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 7, 2, 11, 2, 9, 5, 11, 2, 16, 2, 18, 6, 17, 2, 27, 3, 23, 6, 30, 2, 38, 2, 37, 8, 39, 5, 58, 2, 49, 10, 66, 2, 74, 2, 78, 14, 77, 2, 109, 3, 100, 12, 118, 2, 131, 6, 146, 15, 143, 2, 190, 2, 169, 20, 203, 6, 224, 2, 242, 18, 248
Offset: 0
The a(1) = 1 through a(14) = 9 integer partitions (A = 10, B = 11, C = 12, D = 13, E = 14):
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (111) (22) (11111) (33) (1111111) (44) (333)
(1111) (42) (422) (111111111)
(222) (2222)
(111111) (11111111)
.
(A) (B) (C) (D) (E)
(55) (11111111111) (66) (1111111111111) (77)
(82) (84) (842)
(442) (93) (4442)
(4222) (444) (8222)
(22222) (822) (44222)
(1111111111) (3333) (422222)
(4422) (2222222)
(42222) (11111111111111)
(222222)
(111111111111)
Cf.
A000961,
A001597,
A018819,
A023893,
A023894,
A052409,
A052410,
A072720,
A102430,
A302593,
A322901,
A322902,
A322903.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@#&]],{n,30}]
A102432
Number of distinct polynomials of degree < n and coefficients > 0 with solutions k > 1 such that p(k) = n.
Original entry on oeis.org
1, 2, 3, 6, 7, 11, 12, 18, 21, 27, 28, 39, 40, 48, 52, 66, 67, 83, 84, 103, 108, 124, 125, 154, 157, 179, 186, 217, 218, 255, 256, 298, 305, 343, 347, 409, 410, 458, 467, 536, 537, 610, 611, 691, 705, 781, 782, 896, 899, 999, 1010, 1131, 1132, 1264, 1269, 1419
Offset: 1
a(4)=6 distinct polynomials: 4 (for all n), n+2, 2n, n^2 (for n=2), n+1 (for n=3), n (for n=4).
A102434
Sum_{k=1..n} {number of partitions of n into powers k^m where 0<=m
Original entry on oeis.org
1, 5, 14, 43, 136, 477, 1733, 6459, 24338, 92413, 352753, 1352127, 5200351, 20058360, 77558825, 300540275, 1166803192, 4537567749, 17672632001, 68923264531, 269128937347, 1052049482004, 4116715363946, 16123801841726
Offset: 1
a(2) = 5; 3 partitions for k=1: 2.1^0, 1.1^1+1.1^0, 2.1^1; and 2 for k=2: 2.2^0, 1.2^1
A102433
Number of distinct polynomials of degree < n and coefficients > 0 with solutions k >= 1 such that p(k) = n.
Original entry on oeis.org
1, 4, 12, 40, 132, 472, 1727, 6452, 24330, 92404, 352743, 1352116, 5200339, 20058347, 77558811, 300540260, 1166803176, 4537567732, 17672631983, 68923264512, 269128937327, 1052049481983, 4116715363924, 16123801841703
Offset: 1
a(2)=4 distinct polynomials: 2 (for all n), n+1, 2n (for n=1), n (for n=2).
A323053
Number of integer partitions of n with no 1's such that no part is a power of any other (unequal) part.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 25, 30, 38, 47, 58, 71, 87, 106, 131, 156, 190, 228, 275, 328, 394, 468, 556, 661, 784, 923, 1089, 1283, 1507, 1766, 2068, 2416, 2821, 3284, 3822, 4438, 5148, 5961, 6898, 7968, 9195, 10593, 12198, 14019, 16102, 18472
Offset: 0
The a(2) = 1 through a(11) = 12 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(22) (32) (33) (43) (44) (54) (55) (65)
(222) (52) (53) (63) (64) (74)
(322) (62) (72) (73) (83)
(332) (333) (433) (92)
(2222) (522) (532) (443)
(3222) (622) (533)
(3322) (632)
(22222) (722)
(3332)
(5222)
(32222)
Cf.
A001597,
A002865,
A007916,
A052410,
A101417,
A102430,
A108917,
A305148,
A305630,
A305631,
A321346,
A323093.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]
A322968
Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (66)
(22) (33) (44) (333) (55) (84)
(42) (422) (82) (93)
(222) (2222) (442) (444)
(4222) (822)
(22222) (3333)
(4422)
(42222)
(222222)
The a(20) = 16 integer partitions:
(10,10), (16,4),
(8,8,4), (16,2,2),
(5,5,5,5), (8,4,4,4), (8,8,2,2),
(4,4,4,4,4), (8,4,4,2,2),
(4,4,4,4,2,2), (8,4,2,2,2,2),
(4,4,4,2,2,2,2), (8,2,2,2,2,2,2),
(4,4,2,2,2,2,2,2),
(4,2,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2,2).
Cf.
A001597,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A102430,
A322900,
A322903,
A322911,
A322912,
A379957.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
Showing 1-10 of 11 results.
Comments