A072721
Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0
a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C)
(22) (33) (44) (333) (55) (66)
(42) (422) (82) (84)
(222) (2222) (442) (93)
(4222) (444)
(22222) (822)
(3333)
(4422)
(42222)
(222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
Cf.
A018819,
A023894,
A052410,
A072720,
A072721,
A102430,
A175082,
A322900,
A322902,
A322903,
A322968.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
A072720
Number of partitions of n into parts which are each powers of a single number (which may vary between partitions).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 34, 35, 43, 47, 57, 58, 73, 74, 91, 96, 112, 113, 139, 141, 163, 168, 197, 198, 235, 236, 272, 279, 317, 321, 378, 379, 427, 436, 501, 502, 575, 576, 653, 666, 742, 743, 851, 853, 952, 963, 1080, 1081, 1211, 1216, 1361
Offset: 0
a(6)=10 since 6 can be written as 6 (powers of 6), 5+1 (5), 4+1+1 (4 or 2), 3+3 (3), 3+1+1+1 (3), 4+2 (2), 2+2+2 (2), 2+2+1+1 (2), 2+1+1+1+1 (2) and 1+1+1+1+1+1 (powers of anything).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@DeleteCases[#,1]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
A322901
Numbers whose prime indices are all powers of the same number.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83
Offset: 1
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (11), (3), (21), (4), (111), (22), (31), (5), (211), (6), (41), (1111), (7), (221), (8), (311), (42), (51), (9), (2111), (33), (61), (222), (411).
Cf.
A001597,
A018819,
A052409,
A052410,
A056239,
A072720,
A072721,
A302242,
A302593,
A322900,
A322902,
A322903.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Select[Range[100],SameQ@@radbase/@DeleteCases[primeMS[#],1]&]
A322902
Numbers whose prime indices are all proper powers of the same number.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169
Offset: 1
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (11), (3), (4), (111), (22), (5), (6), (1111), (7), (8), (42), (9), (33), (222).
Cf.
A001597,
A018819,
A023893,
A023894,
A052410,
A056239,
A072720,
A072721,
A302242,
A302593,
A322900,
A322901,
A322903.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Select[Range[100],SameQ@@radbase/@primeMS[#]&]
A322903
Odd numbers whose prime indices are all proper powers of the same number.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 189, 191
Offset: 1
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (19), (20), (21), (22), (2,2,2,2).
Cf.
A001597,
A018819,
A023894,
A052410,
A056239,
A072720,
A072721,
A302593,
A322900,
A322901,
A322902.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Select[Range[100],And[OddQ[#],SameQ@@radbase/@primeMS[#]]&]
A379957
Number of partitions of n where the smallest part is a divisor d > 1 of n, and the other parts are positive powers of that divisor.
Original entry on oeis.org
0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 9, 1, 15, 1, 15, 5, 16, 1, 23, 2, 22, 5, 25, 1, 37, 1, 31, 7, 38, 4, 49, 1, 48, 9, 55, 1, 73, 1, 66, 12, 76, 1, 93, 2, 99, 11, 101, 1, 129, 5, 124, 14, 142, 1, 167, 1, 168, 17, 174, 5, 223, 1, 211, 17, 247, 1, 269, 1, 286, 24, 293, 4, 355, 1, 347, 21, 392, 1, 432, 6, 452, 25
Offset: 1
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11, C = 12):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C)
(22) (33) (44) (333) (55) (66)
(42) (422) (82) (93)
(222) (2222) (442) (444)
(4222) (822)
(22222) (3333)
(4422)
(42222)
(222222)
Note how this differs from A072721 first at n=12 (that has value A072721(12)=10 instead of 9) because this doesn't count the partition (84) of 12, as although both 8 and 4 are powers of 2 (which is a divisor of 12), the 2 itself is not included in that partition as its smallest term and 8 is not a power of 4.
First differs from
A322968 at n=16, where a(16) = 9, while
A322968(16) = 10.
-
powers_of_d_reversed(n, d) = vecsort(vector(logint(n, d), i, d^i),,4);
partitions_into_parts(n, parts, from=1) = if(0==n, 1 , my(s=0); for(i=from, #parts, if(parts[i]<=n, s += partitions_into_parts(n-parts[i], parts, i))); (s));
A379957(n) = if(!n,1,sumdiv(n, d, if(1==d, 0, partitions_into_parts(n-d, powers_of_d_reversed(n, d)))));
-
A379957(n) = sumdiv(n, d, if(d>1, polcoef(1/prod(j=1, logint(n,d), 1 - 'x^(d^j), Ser(1, 'x, n-d+1)), n-d)));
-
seq(n)={Vec(sum(d=2, n, x^d/prod(j=1, logint(n,d), 1 - x^(d^j), Ser(1,x,1+n-d))), -n)} \\ Andrew Howroyd, Jan 23 2025
A322912
Number of integer partitions of n whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 33, 34, 42, 46, 56, 57, 71, 72, 88, 93, 109, 110, 134, 136, 158, 163, 191, 192, 229, 230, 266, 273, 311, 315, 370, 371, 419, 428, 491, 492, 565, 566, 642, 654, 730, 731, 836, 838, 936
Offset: 0
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
Cf.
A000961,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A302593,
A322847,
A322900,
A322901,
A322911.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[And@@powsqfQ/@#,SameQ@@radbase/@DeleteCases[#,1]]&]],{n,30}]
A322968
Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (66)
(22) (33) (44) (333) (55) (84)
(42) (422) (82) (93)
(222) (2222) (442) (444)
(4222) (822)
(22222) (3333)
(4422)
(42222)
(222222)
The a(20) = 16 integer partitions:
(10,10), (16,4),
(8,8,4), (16,2,2),
(5,5,5,5), (8,4,4,4), (8,8,2,2),
(4,4,4,4,4), (8,4,4,2,2),
(4,4,4,4,2,2), (8,4,2,2,2,2),
(4,4,4,2,2,2,2), (8,2,2,2,2,2,2),
(4,4,2,2,2,2,2,2),
(4,2,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2,2).
Cf.
A001597,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A102430,
A322900,
A322903,
A322911,
A322912,
A379957.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
Showing 1-8 of 8 results.
Comments