cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072721 Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2002

Keywords

Comments

First differs from A322968 at a(12) = 10, A322968(12) = 9.

Examples

			a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)  (C)
            (22)       (33)        (44)    (333)  (55)          (66)
                       (42)        (422)          (82)          (84)
                       (222)       (2222)         (442)         (93)
                                                  (4222)        (444)
                                                  (22222)       (822)
                                                                (3333)
                                                                (4422)
                                                                (42222)
                                                                (222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
    
  • PARI
    seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025

Formula

a(n) = A072721(n)-A072721(n-1). a(p)=1 for p prime.
a(n) = A322900(n) - 1. - Gus Wiseman, Jan 01 2019
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A175082(k)^j)). - Andrew Howroyd, Jan 23 2025
For n >= 1, a(n) >= A379957(n). - Antti Karttunen, Jan 23 2025

A326536 MM-numbers of multiset partitions where every part has the same average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 145, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A322902 in having 145.
These are numbers where each prime index has the same average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&]

A072720 Number of partitions of n into parts which are each powers of a single number (which may vary between partitions).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 34, 35, 43, 47, 57, 58, 73, 74, 91, 96, 112, 113, 139, 141, 163, 168, 197, 198, 235, 236, 272, 279, 317, 321, 378, 379, 427, 436, 501, 502, 575, 576, 653, 666, 742, 743, 851, 853, 952, 963, 1080, 1081, 1211, 1216, 1361
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2002

Keywords

Comments

First differs from A322912 at a(12) = 34, A322912(12) = 33.

Examples

			a(6)=10 since 6 can be written as 6 (powers of 6), 5+1 (5), 4+1+1 (4 or 2), 3+3 (3), 3+1+1+1 (3), 4+2 (2), 2+2+2 (2), 2+2+1+1 (2), 2+1+1+1+1 (2) and 1+1+1+1+1+1 (powers of anything).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(1) = 1 through a(8) = 15 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (61)       (44)
             (111)  (31)    (221)    (42)      (331)      (71)
                    (211)   (311)    (51)      (421)      (422)
                    (1111)  (2111)   (222)     (511)      (611)
                            (11111)  (411)     (2221)     (2222)
                                     (2211)    (4111)     (3311)
                                     (3111)    (22111)    (4211)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@DeleteCases[#,1]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)

Formula

a(n) = a(n-1) + A072721(n). a(p) = a(p-1)+1 for p prime.

A322900 Number of integer partitions of n whose parts are all proper powers of the same number.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 7, 2, 11, 2, 9, 5, 11, 2, 16, 2, 18, 6, 17, 2, 27, 3, 23, 6, 30, 2, 38, 2, 37, 8, 39, 5, 58, 2, 49, 10, 66, 2, 74, 2, 78, 14, 77, 2, 109, 3, 100, 12, 118, 2, 131, 6, 146, 15, 143, 2, 190, 2, 169, 20, 203, 6, 224, 2, 242, 18, 248
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

Such a partition contains either no 1's or only 1's.
A proper power of n is a number n^k for some positive integer k.
Also integer partitions whose parts all have the same radical base (A052410).

Examples

			The a(1) = 1 through a(14) = 9 integer partitions (A = 10, B = 11, C = 12, D = 13, E = 14):
  (1) (2)  (3)   (4)    (5)     (6)      (7)       (8)        (9)
      (11) (111) (22)   (11111) (33)     (1111111) (44)       (333)
                 (1111)         (42)               (422)      (111111111)
                                (222)              (2222)
                                (111111)           (11111111)
.
  (A)          (B)           (C)            (D)             (E)
  (55)         (11111111111) (66)           (1111111111111) (77)
  (82)                       (84)                           (842)
  (442)                      (93)                           (4442)
  (4222)                     (444)                          (8222)
  (22222)                    (822)                          (44222)
  (1111111111)               (3333)                         (422222)
                             (4422)                         (2222222)
                             (42222)                        (11111111111111)
                             (222222)
                             (111111111111)
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@#&]],{n,30}]

A322901 Numbers whose prime indices are all powers of the same number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (11), (3), (21), (4), (111), (22), (31), (5), (211), (6), (41), (1111), (7), (221), (8), (311), (42), (51), (9), (2111), (33), (61), (222), (411).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Select[Range[100],SameQ@@radbase/@DeleteCases[primeMS[#],1]&]

A322903 Odd numbers whose prime indices are all proper powers of the same number.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 189, 191
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
A proper power of n is a number n^k for some positive integer k.

Examples

			The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (19), (20), (21), (22), (2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Select[Range[100],And[OddQ[#],SameQ@@radbase/@primeMS[#]]&]
Showing 1-6 of 6 results.