cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102436 Number of matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.

Original entry on oeis.org

1, 5, 34, 223, 1469, 9672, 63685, 419329, 2761042, 18179883, 119704137, 788183312, 5189736537, 34171448333, 224999452834, 1481492773799, 9754783005797, 64229669677144, 422915657312253, 2784657839576297, 18335379997029650
Offset: 0

Views

Author

Emeric Deutsch, Jan 08 2005

Keywords

Comments

Row sums of A102435. The number of matchings of the ladder graph L(n)=P_2 X P_n is given in A030186.
Number of tilings of a 2xn board with squares of 2 colors and dominoes of 1 color [Katz-Stenson]. - R. J. Mathar, Apr 17 2009

Examples

			a(2)=34 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have one 0-matching (the empty set), eight 1-matchings (each edge as a singleton), sixteen 2-matchings (see Example in A102435), eight 3-matchings (any 3-element subset of {Aa,Bb,Cc,Dd} and {Aa,Bb,CD},{Bb,Cc,AD},{Cc,Dd,AB},{Aa,Dd,BC}) and one 4-matching ({Aa,Bb,Cc,Dd}).
		

Crossrefs

Programs

  • GAP
    a:=[1,5,34];; for n in [4..30] do a[n]:=6*a[n-1]+4*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    I:=[1,5,34]; [n le 3 select I[n] else 6*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 27 2019
    
  • Maple
    a[0]:=1: a[1]:=5: a[2]:=34: for n from 3 to 24 do a[n]:=6*a[n-1]+4*a[n-2] -a[n-3] od: seq(a[n],n=0..24);
  • Mathematica
    LinearRecurrence[{6,4,-1}, {1,5,34}, 30] (* G. C. Greubel, Oct 27 2019 *)
  • PARI
    Vec((1 - x) / (1 - 6*x - 4*x^2 + x^3) + O(x^30)) \\ Colin Barker, Jun 06 2017
    
  • Sage
    def A102436_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1-6*x-4*x^2+x^3)).list()
    A102436_list(30) # G. C. Greubel, Oct 27 2019
    

Formula

a(n) = 6*a(n-1) + 4*a(n-2) - a(n-3) for n>=3.
G.f.: (1-x) / (1-6*x-4*x^2+x^3).
Showing 1-1 of 1 results.