cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159616 Expansion of (1-x)/(1-5*x-2*x^2+8*x^3).

Original entry on oeis.org

1, 4, 22, 110, 562, 2854, 14514, 73782, 375106, 1906982, 9694866, 49287446, 250571106, 1273871494, 6476200114, 32924174710, 167382301826, 850950257638, 4326122494162, 21993454571478, 111811915784610, 568437508112710
Offset: 0

Views

Author

R. J. Mathar, Apr 17 2009

Keywords

Comments

Number of tilings of a 2 X n board with squares of 1 color and dominoes of 2 colors if n > 2. The number of tilings is 3 if n=1, and 17 if n=2.
a(n) = element(1,2) in A^n, where A is the 7 X 7 matrix defined by A(1,i) = A(7,i) = A(i,1) = A(i,7) = A(i,i) = A(i,7-i+1) = 1, and A(i,j) = 0 otherwise. - Lechoslaw Ratajczak, Jan 02 2017

Crossrefs

Programs

  • GAP
    a:=[1,4,22];; for n in [4..40] do a[n]:=5*a[n-1]+2*a[n-2]-8*a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-5*x-2*x^2+8*x^3) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq(coeff(series((1-x)/(1-5*x-2*x^2+8*x^3), x, n+1), x, n), n=0..40); # G. C. Greubel, Oct 27 2019~
  • Mathematica
    CoefficientList[Series[(1-x)/(1-5*x-2*x^2+8*x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2012 *)
    LinearRecurrence[{5,2,-8}, {1,4,22}, 30] (* Harvey P. Dale, Dec 22 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-5*x-2*x^2+8*x^3)) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A159616_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1-5*x-2*x^2+8*x^3)).list()
    A159616_list(40) # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: (1-x)/(1-5*x-2*x^2+8*x^3).
a(n) = 5*a(n-1) + 2*a(n-2) - 8*a(n-3) for n > 2 with a(0)=1, a(1)=4, a(2)=22. - Harvey P. Dale, Dec 22 2013

A159617 G.f.: (1-x)/(1-8*x-8*x^2+8*x^3).

Original entry on oeis.org

1, 7, 64, 560, 4936, 43456, 382656, 3369408, 29668864, 261244928, 2300355072, 20255449088, 178356473856, 1570492542976, 13828748541952, 121767076888576, 1072202663100416, 9441127931576320, 83132508142305280, 732011467286249472
Offset: 0

Views

Author

R. J. Mathar, Apr 17 2009

Keywords

Comments

Number of tilings of a 2xn board with squares of 2 colors and dominoes of 2 colors if n>2. The number of tilings is 6 if n=1, and 56 if n=2.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 8 x - 8 x^2 + 8 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2012 *)
  • PARI
    Vec((1 - x) / (1 - 8*x - 8*x^2 + 8*x^3) + O(x^25)) \\ Colin Barker, Jul 05 2020

Formula

a(n) = 8*a(n-1) + 8*a(n-2) - 8*a(n-3) for n>2. - Colin Barker, Jul 05 2020

A253265 The number of tilings of 2 X n boards with squares of 2 colors and dominoes of 3 colors.

Original entry on oeis.org

1, 7, 82, 877, 9565, 103960, 1130701, 12296275, 133724242, 1454268793, 15815379409, 171994465072, 1870463946217, 20341557798991, 221217294787570, 2405769114915733, 26163076626035413, 284527128680078536, 3094272440210485525, 33650646877362841531, 365955505581792121138
Offset: 0

Views

Author

R. J. Mathar, Sep 30 2015

Keywords

Comments

The numerator in Formula (3) in the JIS article should be 1-b*x, not 1-x.

Crossrefs

Cf. A030186 (pieces of a single color), A102436.

Programs

  • GAP
    a:=[1,7,82];; for n in [4..30] do a[n]:=10*a[n-1]+12*a[n-2] -27*a[n-3]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x)/(1-10*x-12*x^2+27*x^3) )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(coeff(series((1-3*x)/(1-10*x-12*x^2+27*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-10x-12x^2+27x^3), {x, 0, 20}], x] (* Michael De Vlieger, Sep 30 2015 *)
    LinearRecurrence[{10,12,-27},{1,7,82},30] (* Harvey P. Dale, Dec 30 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-10*x-12*x^2+27*x^3)) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A253265_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-10*x-12*x^2+27*x^3)).list()
    A253265_list(30) # G. C. Greubel, Oct 28 2019
    

Formula

G.f.: ( 1-3*x ) / ( 1 - 10*x - 12*x^2 + 27*x^3 ).

A102435 Triangle read by rows: T(n,k) is the number of k-matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.

Original entry on oeis.org

1, 1, 3, 1, 1, 8, 16, 8, 1, 1, 13, 54, 87, 54, 13, 1, 1, 18, 117, 348, 501, 348, 117, 18, 1, 1, 23, 205, 914, 2210, 2966, 2210, 914, 205, 23, 1, 1, 28, 318, 1910, 6658, 13980, 17895, 13980, 6658, 1910, 318, 28, 1, 1, 33, 456, 3461, 15945, 46648, 88425, 109391, 88425, 46648, 15945, 3461, 456, 33, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 08 2005

Keywords

Comments

Row n contains 2n+1 terms. Row sums yield A102436 T(n,k)=T(n,2n-k). The number of k-matchings of the ladder graph L(n)=P_2 X P_n is given in A046741.

Examples

			T(2,2)=16 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have sixteen 2-matchings. Indeed, each of the edges Aa,Bb,Cc,Dd can be matched with five edges and each of the edges AB,BC,CD,AD can be matched with three edges. Thus we have (4*5+4*3)/2=16 matchings.
Triangle begins:
1;
1,3,1;
1,8,16,8,1;
1,13,54,87,54,13,1;
		

Crossrefs

Programs

  • Maple
    P[0]:=1: P[1]:=1+3*t+t^2: P[2]:=1+8*t+16*t^2+8*t^3+t^4: for n from 3 to 8 do P[n]:=sort(expand((1+4*t+t^2)*P[n-1]+t*(1+t)^2*P[n-2]-t^3*P[n-3])) od: for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..2*n+1) od; # yields sequence in triangular form

Formula

P[0]=1, P[1]=1+3t+t^2, P[2]=1+8t+16t^2+8t^3+t^4, P[n]=(1+4t+t^2)P[n-1]+t(1+t)^2*P[n-2]-t^3*P[n-3] for n>=3. G.f.= (1-tz)/[1-(1+4t+t^2)z-t(t+1)^2*z^2+t^3*z^3].
Showing 1-4 of 4 results.