A102467 Positive integers k such that d(k) <> Omega(k) + omega(k), where d = A000005, Omega = A001222 and omega = A001221.
1, 12, 18, 20, 24, 28, 30, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156
Offset: 1
Keywords
Examples
10 is not in the sequence since d(10) = 4 is equal to Omega(10) + omega(10) = 2 + 2 = 4. 12 is in the sequence since d(12) = 6 is not equal to Omega(12) + omega(12) = 3 + 2 = 5. - _Wesley Ivan Hurt_, Apr 25 2020
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Joerg Arndt, Matters Computational (The Fxtbook), section 40.4.1.3 "Testing for irreducibility without GCD computations", pp. 839-840.
Programs
-
Haskell
a102467 n = a102467_list !! (n-1) a102467_list = [x | x <- [1..], a000005 x /= a001221 x + a001222 x] -- Reinhard Zumkeller, Dec 14 2012
-
Maple
with(numtheory): q:= n-> is(tau(n)<>bigomega(n)+nops(factorset(n))): select(q, [$1..200])[]; # Alois P. Heinz, Jul 14 2023
-
Mathematica
Select[Range[200], DivisorSigma[0, #] != PrimeOmega[#] + PrimeNu[#]&] (* Jean-François Alcover, Jun 22 2018 *)
-
PARI
is(n)=my(f=factor(n)[,2]); #f!=1 && f!=[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
-
Sage
def is_A102467(n) : return sloane.A001221(n) != 1 and sloane.A001222(n) != 2 def A102467_list(n) : return [k for k in (1..n) if is_A102467(k)] A102467_list(156) # Peter Luschny, Feb 07 2012
Formula
Extensions
Name changed by Wesley Ivan Hurt, Apr 25 2020
Comments