A102485 a(n) = 5*3^n - 4*2^n.
1, 7, 29, 103, 341, 1087, 3389, 10423, 31781, 96367, 291149, 877543, 2640821, 7938847, 23849309, 71613463, 214971461, 645176527, 1936053869, 5809210183, 17429727701, 52293377407, 156888520829, 470682339703, 1412080573541, 4236308829487, 12709060706189
Offset: 0
References
- B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP, Benjamin/Cummings, Vol. 1, 1991; p. 63.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Programs
-
Magma
I:=[1, 7]; [n le 2 select I[n] else 5*Self(n-1)-6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 15 2012
-
Maple
a := proc(n) option remember; if n = 0 then RETURN(1) end if; if n = 1 then RETURN(7) end if; 5*a(n - 1) - 6*a(n - 2); end proc;
-
Mathematica
LinearRecurrence[{5,-6},{1,7},30] (* Vincenzo Librandi, Jan 15 2012 *) Table[5*3^n-4*2^n,{n,0,30}] (* Harvey P. Dale, Jul 16 2024 *)
-
PARI
a(n)=5*3^n-4<
Charles R Greathouse IV, Jan 15 2012
Formula
a(n) = 5*a(n - 1) - 6*a(n - 2).
G.f.: (1+2*x)/((1-2*x)*(1-3*x)). - Colin Barker, Jan 14 2012
a(n) = A217764(n,8). - Ross La Haye, Mar 27 2013
Extensions
New definition from Ralf Stephan, May 17 2007