cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102491 Numbers whose base-20 representation can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

a(n) = A118761(n) for n<=50. - Reinhard Zumkeller, May 01 2006

Crossrefs

Complement of A102492; Cf. A102487, A102489, A102493. Cf. A037454, A037462, A007091.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102491 n = a102491_list !! (n-1)
    a102491_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Maple
    seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
  • PARI
    isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
    
  • PARI
    a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
  • Python
    A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
    

Formula

From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(n+1) = n + 1/2*Sum_{k >= 1} 20^k*floor(n/10^k). Cf. A037454, A037462 and A007091.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016