A102491 Numbers whose base-20 representation can be written with decimal digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Vigesimal
- Wikipedia, Vigesimal
Programs
-
Haskell
import Data.List (unfoldr) a102491 n = a102491_list !! (n-1) a102491_list = filter (all (<= 9) . unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..] -- Reinhard Zumkeller, Jun 27 2013
-
Maple
seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
-
Mathematica
Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
-
PARI
isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
-
PARI
a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
-
Python
A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
Formula
From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016
Comments