A102518 a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=0..k} binomial(3k, 3j).
1, 3, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363, 4052555153018976267, 36472996377170786403
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Counting Walks on Finite Graphs, Section 4.
- Index entries for linear recurrences with constant coefficients, signature (9).
Programs
-
Mathematica
Join[{1},NestList[9#&,3,20]] (* Harvey P. Dale, Feb 03 2021 *)
-
PARI
Vec((1-6*x)/(1-9*x) + O(x^30)) \\ Colin Barker, Mar 17 2016
Formula
a(n) = 3^(2*n-1) + 2*0^k/3; a(n+1) = A013708(n).
G.f.: (1-6*x) / (1-9*x). - Colin Barker, Mar 17 2016
E.g.f.: (exp(9*x) + 2)/3. - Stefano Spezia, Jul 09 2024
Comments