A102526 Antidiagonal sums of Losanitsch's triangle (A034851).
1, 1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 0
References
- Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
Links
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,0,-1,-1).
Programs
-
Maple
with(combinat): A102526 :=proc(n): if type(n, even) then (fibonacci(n+1)+fibonacci(n/2+2))/2 else (fibonacci(n+1)+fibonacci((n+1)/2))/2 fi: end: seq(A102526(n), n=0..38); # Johannes W. Meijer, Jul 14 2011
-
Mathematica
LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 1, 2, 2, 4, 5}, 40] (* Jean-François Alcover, Nov 17 2017 *)
-
PARI
Vec((1+x)*(1-x-x^3)/(x^2+x-1)/(x^4+x^2-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 17 2017
-
PARI
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,-1,0,-1,2,1]^n*[1;1;2;2;4;5])[1,1] \\ Charles R Greathouse IV, Nov 17 2017
Formula
G.f.: -(1+x)*(x^3+x-1) / ( (x^2+x-1)*(x^4+x^2-1) ). - R. J. Mathar, Nov 09 2013
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 17 2020
Comments