cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102553 Numbers k such that for all prime-factors p: p = (k AND p), bitwise.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 63, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 125, 127, 131, 135, 137, 139, 143, 149, 151, 157, 163, 167, 173, 175, 179, 181, 187, 191, 193, 197, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

Numbers k such that A102550(k) = A001221(k).
Apart from first term, subsequence of A102552;
A000040 is a subsequence.
Numbers k such that the bitwise OR of k with all prime divisors of k is equal to k. - Chai Wah Wu, Dec 18 2022

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], # == BitAnd[n, #]&];
    Select[Range[200], okQ] (* Jean-François Alcover, Nov 16 2021 *)
  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import primefactors
    def A102553_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n == 1 or n|reduce(ior,primefactors(n))==n,count(max(startvalue,1)))
    A102553_list = list(islice(A102553_gen(),20)) # Chai Wah Wu, Dec 18 2022

A102550 Number of distinct prime-factors of n that are bitwise covered by n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

p is bitwise covered by n iff (p = (n AND p)) bitwise: A080099(n,p)=p.

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[k_] := Module[{f=FactorInteger[k][[;; , 1]]}, Count[BitAnd[k, f]-f, 0]];  Array[a,120] (* Amiram Eldar, Feb 06 2019 *)

Formula

a(A102553(n)) = A001221(A102553(n));
a(A102554(n)) < A001221(A102554(n));
a(A102551(n)) = 0, a(A102551(n)) > 0;
a(A102555(n)) = n;
a(m) < n for m < A102555(n).
a(n) = Sum_{p|n} (binomial(n,p) mod 2), where p is a prime. - Ridouane Oudra, May 03 2019

Extensions

Offset 1 from Amiram Eldar, Feb 06 2019

A355670 Numbers k such that A246600(k) < A000005(k).

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Chai Wah Wu, Dec 19 2022

Keywords

Comments

Numbers k such that bitwise OR(k, d_1, d_2, ... d_m) > k where d_1, ..., d_m are the divisors of k.
Complement of A359080.
First 21 terms coincide with A336376.
A102554 is a subsequence; this sequence contains 1, 135, 175, 243, 343, 351, 363, ... which are not in A102554.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import divisors
    def A355670_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n|reduce(ior,divisors(n,generator=True))>n,count(max(startvalue,1)))
    A355670_list = list(islice(A355670_gen(), 20))
Showing 1-3 of 3 results.