A359080 Numbers k such that A246600(k) = A000005(k).
1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 63, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 125, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197, 199, 211, 219
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; Select[Range[250], s[#] == DivisorSigma[0, #] &]
-
PARI
is(n) = sumdiv(n, d, bitor(d, n) == n) == numdiv(n);
-
Python
from itertools import count, islice from operator import ior from functools import reduce from sympy import divisors def A359080_gen(startvalue=1): # generator of terms >= startvalue return filter( lambda n: n | reduce(ior, divisors(n, generator=True)) == n, count(max(startvalue, 1)), ) A359080_list = list(islice(A359080_gen(), 20)) # Chai Wah Wu, Dec 18 2022 print(A359080_list)
Comments