cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102210 Number of primes that are bitwise covered by n.

Original entry on oeis.org

0, 1, 2, 0, 1, 1, 4, 0, 0, 1, 3, 0, 2, 1, 6, 0, 1, 1, 4, 0, 2, 1, 7, 0, 1, 1, 5, 0, 4, 1, 11, 0, 0, 1, 2, 0, 2, 1, 5, 0, 1, 1, 5, 0, 4, 1, 10, 0, 1, 1, 4, 0, 4, 1, 9, 0, 2, 1, 8, 0, 8, 1, 18, 0, 0, 1, 3, 0, 1, 1, 6, 0, 1, 1, 5, 0, 3, 1, 10, 0, 1, 1, 6, 0, 2, 1, 10, 0, 3, 1, 9, 0, 6, 1, 17, 0, 1, 1, 4, 0, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 30 2004

Keywords

Comments

p is bitwise covered by n iff (p = (n AND p)) bitwise: A080099(n,p)=p.

Examples

			n=21->10101 -> a(21) = #{00101=5,10001=17} = 2.
		

Crossrefs

Programs

Formula

a(A102211(n)) = 0; a(A102212(n)) = 1; a(A102213(n)) > 1.
a(2^k-1) = A007053(k) for k > 1. - Amiram Eldar, Jan 12 2020

A102553 Numbers k such that for all prime-factors p: p = (k AND p), bitwise.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 63, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 125, 127, 131, 135, 137, 139, 143, 149, 151, 157, 163, 167, 173, 175, 179, 181, 187, 191, 193, 197, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

Numbers k such that A102550(k) = A001221(k).
Apart from first term, subsequence of A102552;
A000040 is a subsequence.
Numbers k such that the bitwise OR of k with all prime divisors of k is equal to k. - Chai Wah Wu, Dec 18 2022

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], # == BitAnd[n, #]&];
    Select[Range[200], okQ] (* Jean-François Alcover, Nov 16 2021 *)
  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import primefactors
    def A102553_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n == 1 or n|reduce(ior,primefactors(n))==n,count(max(startvalue,1)))
    A102553_list = list(islice(A102553_gen(),20)) # Chai Wah Wu, Dec 18 2022

A102554 Numbers k such that p <> (k AND p) for at least one prime-factor p.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

Numbers k such that A102550(k) < A001221(k).
Numbers k such that the bitwise OR of k and all prime factors of k is not equal to k. - Chai Wah Wu, Dec 18 2022

Crossrefs

Programs

  • Maple
    isA102554 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if p <> ANDnos(p,n) then
                return true
            end if;
        end do:
        false ;
    end proc:
    for n from 1 to 500 do
        if isA102554(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 20 2023
  • Python
    from itertools import count, islice
    from functools import reduce
    from operator import ior
    from sympy import primefactors
    def A102554_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n|reduce(ior,primefactors(n))!=n,count(max(startvalue,2)))
    A102554_list = list(islice(A102554_gen(),20)) # Chai Wah Wu, Dec 18 2022

A102555 Smallest number covering bitwise exactly n prime factors.

Original entry on oeis.org

1, 2, 15, 255, 3135, 41055, 440895, 10705695, 242777535, 4360010655
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

A102550(a(n))=n and A102550(m) < n for m < a(n).
a(10) <= 287901348735. - Amiram Eldar, Feb 04 2019

Crossrefs

Programs

  • Mathematica
    npfQ[k_,n_] := Module[{f=FactorInteger[k][[;;,1]]}, Length[f] == n && Count[ BitAnd[k, f] - f, 0] == n]; s={1}; Do[k=2; While[!npfQ[k,n], k++]; AppendTo[s, k],{n, 1, 7}]; s (* Amiram Eldar, Feb 04 2019 *)

Extensions

Two more terms and "base" keyword from Max Alekseyev, Sep 13 2009
Offset 0 and a(7)-a(9) from Amiram Eldar, Feb 04 2019
Showing 1-4 of 4 results.