cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102559 Denominator of the probability that (2n+1)-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

4, 8, 20, 560, 560, 440, 7280, 160160, 2722720, 51731680, 51731680, 45762640, 1487285800, 5949143200, 86262576400, 10696559473600, 368846878400, 562976814400, 395772700523200, 395772700523200, 16226680721451200
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			1 - (3*sqrt(3))/(4*Pi), 1 - (9*sqrt(3))/(8*Pi), 1 - (27*sqrt(3))/(20*Pi), ...
		

Crossrefs

Cf. A102556, A102557, A102558 (numerator).

Programs

  • Mathematica
    Table[Denominator[Simplify[Pi/Sqrt[3] -(3^(n+1)*Hypergeometric2F1[1/2, 1/2+ n, 3/2+n, 3/4])/(2*(2*n+1)*Binomial[2*n,n])]], {n,30}] (* G. C. Greubel, Feb 01 2025 *)

Formula

From G. C. Greubel, Feb 01 2025: (Start)
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*binomial(2*n, n))) * Sum_{k>=0} binomial(2*k, k)*(3/16)^k/(2*k + 2*n + 1).
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*(2*n+1)*binomial(2*n,n))) * Hypergeometric2F1([1/2, 1/2 + n], [3/2+n], 3/4). (End)