A102559 Denominator of the probability that (2n+1)-dimensional Gaussian random triangle has an obtuse angle.
4, 8, 20, 560, 560, 440, 7280, 160160, 2722720, 51731680, 51731680, 45762640, 1487285800, 5949143200, 86262576400, 10696559473600, 368846878400, 562976814400, 395772700523200, 395772700523200, 16226680721451200
Offset: 1
Examples
1 - (3*sqrt(3))/(4*Pi), 1 - (9*sqrt(3))/(8*Pi), 1 - (27*sqrt(3))/(20*Pi), ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Gaussian Triangle Picking
Programs
-
Mathematica
Table[Denominator[Simplify[Pi/Sqrt[3] -(3^(n+1)*Hypergeometric2F1[1/2, 1/2+ n, 3/2+n, 3/4])/(2*(2*n+1)*Binomial[2*n,n])]], {n,30}] (* G. C. Greubel, Feb 01 2025 *)
Formula
From G. C. Greubel, Feb 01 2025: (Start)
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*binomial(2*n, n))) * Sum_{k>=0} binomial(2*k, k)*(3/16)^k/(2*k + 2*n + 1).
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*(2*n+1)*binomial(2*n,n))) * Hypergeometric2F1([1/2, 1/2 + n], [3/2+n], 3/4). (End)