cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A102557 Denominator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

4, 32, 512, 4096, 131072, 1048576, 16777216, 134217728, 8589934592, 68719476736, 1099511627776, 8796093022208, 281474976710656, 2251799813685248, 36028797018963968, 288230376151711744, 36893488147419103232, 295147905179352825856, 4722366482869645213696, 37778931862957161709568
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Comments

Presumably this is the same as A093581? - Andrew S. Plewe, Apr 18 2007
a(n) equals A093581(n) for n <= 55000. - G. C. Greubel, Oct 20 2024

Examples

			3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ...
		

Crossrefs

Programs

  • Magma
    A102557:= func< n | Power(2, 4*n-2-(&+Intseq(2*(n-1), 2))) >;
    [A102557(n): n in [1..30]]; // G. C. Greubel, Oct 20 2024
    
  • Maple
    p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember):
    seq(denom(p(n)),n=1..50); # Robert Israel, Sep 29 2016
    # Alternative, assuming offset 0:
    a := n -> numer((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)): # Peter Luschny, Dec 05 2024
  • Mathematica
    a[n_]:= (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Denominator; Array[a, 20] (* Jean-François Alcover, Mar 22 2019 *)
  • PARI
    a(n) = denominator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ Michel Marcus, Mar 23 2019
    
  • SageMath
    def A102557(n): return pow(2, 4*n-2 - sum((2*n-2).digits(2)))
    [A102557(n) for n in range(1,31)] # G. C. Greubel, Oct 20 2024

Formula

From Robert Israel, Sep 29 2016: (Start)
a(n) is the denominator of p(n) = Sum_{k=n..2n-1} binomial(2n-1,k) 3^(2n-k)/4^(2n-1).
8*(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1, with p(0) = 0, p(1) = 3/4, and p(2) = 15/32.
G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2*(1-x)). (End)
Assuming offset 0: a(n) = numerator((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)). - Peter Luschny, Dec 05 2024

A102556 Numerator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

3, 15, 159, 867, 19239, 107985, 1222563, 6965835, 319153335, 1835486085, 21185534577, 122622340677, 2846090375067, 16550504577861, 192854402926251, 1125503935556763, 105252693980913879, 615999836125850637, 7219077361263238917, 42347454581722163361, 994637701798929524937
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			p(n) = {3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ... }_{n >= 1}.
		

Crossrefs

Cf. A102557 (denominators), A102558, A102559.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A102556:= func< n | Numerator( Coefficient(R!( 3*x*(1-1/Sqrt(4-3*x))/(2-2*x) ), n) ) >;
    [A102556(n): n in [1..30]]; // G. C. Greubel, Jan 31 2025
    
  • Maple
    p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember):
    seq(numer(p(n)),n=1..50); # Robert Israel, Sep 29 2016
  • Mathematica
    a[n_] := (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Numerator; Array[a, 20] (* Jean-François Alcover, Mar 22 2019 *)
  • PARI
    a(n) = numerator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ Michel Marcus, Mar 23 2019
    
  • SageMath
    def A102556(n): return ( 3*(1-1/sqrt(4-3*x))/(2*(1-x)) ).series(x,n+1).list()[n].numerator()
    print([A102556(n) for n in range(31)]) # G. C. Greubel, Jan 31 2025

Formula

From Robert Israel, Sep 29 2016: (Start)
a(n) is the numerator of p(n) = Sum_{k=n..2*n-1} binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1).
8(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1.
G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2-2*x). (End)

A102558 Numerator of the probability that (2n+1)-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

3, 9, 27, 837, 891, 729, 12393, 277749, 4782969, 91703097, 92293587, 82019061, 2674388259, 10722885057, 155747819547, 19336668383673, 667382013477, 1019303306559, 716912704223253, 717162977859147, 29411190301301847
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			1 - (3*sqrt(3))/(4*Pi), 1 - (9*sqrt(3))/(8*Pi), 1 - (27*sqrt(3))/(20*Pi), ...
		

Crossrefs

Cf. A102556, A102557, A102559 (denominator).

Programs

  • Mathematica
    Table[Numerator[Simplify[Pi/Sqrt[3] - 3^(n+1)*Hypergeometric2F1[1/2, 1/2 + n, 3/2+n, 3/4]/(2*(2*n+1)*Binomial[2*n,n])]], {n,40}] (* G. C. Greubel, Feb 01 2025 *)

Formula

From G. C. Greubel, Feb 01 2025: (Start)
a(n) = numerator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*binomial(2*n, n))) * Sum_{k>=0} binomial(2*k, k)*(3/16)^k/(2*k + 2*n + 1).
a(n) = numerator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*(2*n+1)*binomial(2*n,n))) * Hypergeometric2F1([1/2, 1/2 + n], [3/2+n], 3/4). (End)

A249491 Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

3, 3, 4, 1, 2, 2, 3, 3, 0, 5, 1, 3, 8, 8, 1, 4, 5, 5, 7, 5, 3, 2, 3, 7, 5, 5, 8, 1, 2, 6, 5, 0, 4, 9, 0, 5, 9, 8, 5, 0, 2, 4, 5, 6, 6, 8, 0, 9, 7, 2, 9, 4, 2, 7, 5, 8, 2, 3, 2, 4, 0, 0, 9, 9, 1, 2, 3, 1, 4, 6, 3, 5, 4, 7, 6, 1, 6, 4, 2, 4, 0, 2, 0, 0, 6, 4, 7, 7, 6, 6, 2, 0, 2, 9, 0, 9, 9, 5, 5, 3, 2, 2, 6, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			3.341223305138814557532375581265049059850245668...
		

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticE(1/2)-sqrt(3)*EllipticK(I/sqrt(3)), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    ek[x_] := EllipticK[x^2/(-1 + x^2)]/Sqrt[1 - x^2]; ee[x_] := EllipticE[x^2]; p = 4*ee[1/2] - (3/2)*ek[1/2]; (* or *) p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; RealDigits[p, 10, 104] // First
    RealDigits[ N[ EllipticE[-8], 102]][[1]] (* Altug Alkan, Oct 02 2018 *)
    RealDigits[3 EllipticE[8/9], 10, 102][[1]] (* Jan Mangaldan, Nov 24 2020 *)
  • PARI
    magm(a,b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a,b,c] = [(a+b)/2,c+z,c-z]); (a+b)/2
    E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)
    K(x)=Pi/2/agm(1,sqrt(1-x))
    4*E(1/4) - sqrt(3)*K(-1/3) \\ Charles R Greathouse IV, Aug 02 2018

Formula

p = 4*E(1/4) - sqrt(3)*K(-1/3), where E is the complete elliptic integral and K the complete elliptic integral of the first kind.
Equals A093728/2. - Altug Alkan, Oct 02 2018

A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.23255934654317823447309035975033389931043501543502...
		

Crossrefs

Programs

  • Maple
    Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First
    RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)

Formula

rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.

A249539 Decimal expansion of 12/sqrt(Pi), the average perimeter of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

6, 7, 7, 0, 2, 7, 5, 0, 0, 2, 5, 7, 3, 0, 7, 5, 4, 4, 3, 3, 7, 6, 9, 5, 3, 4, 1, 8, 7, 2, 9, 2, 7, 1, 0, 3, 0, 1, 2, 8, 6, 0, 7, 5, 5, 1, 9, 4, 7, 9, 8, 6, 2, 8, 2, 1, 2, 9, 0, 2, 8, 6, 6, 0, 5, 2, 7, 7, 0, 9, 6, 2, 1, 2, 9, 7, 9, 2, 0, 9, 7, 3, 8, 4, 0, 9, 2, 3, 9, 2, 2, 4, 2, 5, 2, 8, 8, 3, 6, 1, 3, 1, 6, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			6.770275002573075443376953418729271030128607551947986282129...
		

Crossrefs

Cf. A102519, A102520, A102558, A102559, A249521 (average side length in three dimensions), A249538 (average perimeter in two dimensions).

Programs

A249542 Decimal expansion of the average product of a side and an adjacent angle of a random Gaussian triangle in two dimensions.

Original entry on oeis.org

1, 6, 3, 7, 7, 2, 9, 3, 2, 4, 8, 5, 6, 8, 6, 8, 0, 3, 2, 7, 8, 0, 1, 5, 6, 9, 5, 6, 7, 9, 8, 4, 7, 6, 4, 5, 5, 8, 2, 0, 3, 8, 1, 9, 8, 7, 0, 9, 0, 5, 9, 3, 4, 1, 7, 5, 4, 8, 7, 6, 5, 2, 2, 4, 7, 7, 1, 2, 0, 5, 6, 8, 9, 3, 3, 1, 1, 1, 6, 4, 9, 0, 2, 1, 5, 0, 7, 1, 1, 3, 4, 8, 3, 2, 2, 0, 7, 1, 2, 4, 6, 9, 9, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.
As of 2010, an exact expression of this constant was not known, according to Steven Finch.
This average product is noticeably smaller than the product of the averages sqrt(Pi)*Pi/3 = 1.8561..., the side length being negatively correlated with the adjacent angle value.

Examples

			1.6377293248568680327801569567984764558203819870905934...
		

Crossrefs

Programs

  • Mathematica
    ex = (-Sqrt[3]*Log[3] + Pi^2 - 8*PolyLog[2, 2-Sqrt[3]] + 2*PolyLog[2, 7-4*Sqrt[3]])/(2*Sqrt[Pi]); RealDigits[ex, 10, 105] // First
  • Python
    from mpmath import *
    mp.dps=106
    C = (-sqrt(3)*log(3) + pi**2 - 8*polylog(2, 2-sqrt(3)) + 2*polylog(2, 7 - 4*sqrt(3)))/(2*sqrt(pi))
    print([int(n) for n in list(str(C).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 04 2017

Formula

Equals (1/(3*Pi))*Integral_{x=0..oo} Integral_{y=0..oo} Integral_{t=0..Pi} x^2*y*t*exp(-(1/3)*(x^2 - x*y*cos(t) + y^2)) dt dy dx.
Equals (-sqrt(3)*log(3) + Pi^2 - 8*Li_2(2-sqrt(3)) + 2*Li_2(7-4*sqrt(3)))/(2*sqrt(Pi)), where Li_2 is the dilogarithm function.

A249522 Decimal expansion of the expected product of two sides of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

5, 3, 0, 7, 9, 7, 3, 3, 7, 2, 5, 3, 0, 7, 5, 2, 2, 9, 7, 0, 6, 7, 9, 5, 8, 9, 8, 9, 8, 7, 7, 8, 1, 6, 6, 4, 8, 3, 8, 4, 3, 1, 8, 8, 8, 2, 1, 9, 9, 8, 4, 3, 9, 1, 6, 7, 9, 6, 1, 9, 6, 1, 2, 1, 7, 4, 6, 1, 8, 1, 8, 2, 0, 8, 1, 5, 6, 1, 8, 7, 6, 9, 0, 4, 2, 2, 8, 0, 1, 7, 2, 9, 3, 9, 0, 2, 5, 3, 3, 5, 2, 4, 6
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			5.3079733725307522970679589898778166483843188821998439167961...
		

Crossrefs

Programs

  • Mathematica
    p = 2 + 6*Sqrt[3]/Pi; RealDigits[p, 10, 104] // First

Formula

p = 2 + 6*sqrt(3)/Pi.

A249523 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

2, 3, 7, 0, 5, 1, 0, 2, 5, 2, 0, 9, 6, 0, 0, 2, 8, 6, 5, 8, 5, 5, 6, 9, 5, 0, 4, 6, 7, 6, 4, 0, 8, 5, 7, 1, 9, 4, 0, 1, 7, 6, 9, 1, 6, 2, 3, 6, 9, 7, 8, 1, 3, 1, 8, 6, 3, 2, 3, 8, 2, 6, 4, 5, 8, 9, 6, 8, 3, 1, 0, 6, 2, 3, 1, 4, 3, 1, 6, 5, 3, 1, 1, 8, 4, 1, 4, 5, 3, 3, 9, 9, 3, 8, 5, 7, 3, 3, 6, 9, 4, 3, 3
Offset: 0

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.237051025209600286585569504676408571940176916236978...
		

Crossrefs

Programs

  • Mathematica
    rho = (-8 + 3*Sqrt[3] + Pi)/(-8 + 3*Pi); RealDigits[rho, 10, 103] // First
  • PARI
    (sqrt(27)+Pi-8)/(3*Pi-8) \\ Charles R Greathouse IV, Apr 20 2016

Formula

rho = (-8 + 3*sqrt(3) + Pi)/(-8 + 3*Pi).
Showing 1-9 of 9 results.