cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A102556 Numerator of the probability that 2n-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

3, 15, 159, 867, 19239, 107985, 1222563, 6965835, 319153335, 1835486085, 21185534577, 122622340677, 2846090375067, 16550504577861, 192854402926251, 1125503935556763, 105252693980913879, 615999836125850637, 7219077361263238917, 42347454581722163361, 994637701798929524937
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			p(n) = {3/4, 15/32, 159/512, 867/4096, 19239/131072, 107985/1048576, ... }_{n >= 1}.
		

Crossrefs

Cf. A102557 (denominators), A102558, A102559.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A102556:= func< n | Numerator( Coefficient(R!( 3*x*(1-1/Sqrt(4-3*x))/(2-2*x) ), n) ) >;
    [A102556(n): n in [1..30]]; // G. C. Greubel, Jan 31 2025
    
  • Maple
    p:= gfun:-rectoproc({(-6*n-3)*v(n)+(14*n+11)*v(n+1)+(-8*n-8)*v(n+2), v(0) = 0, v(1) = 3/4, v(2) = 15/32},v(n),remember):
    seq(numer(p(n)),n=1..50); # Robert Israel, Sep 29 2016
  • Mathematica
    a[n_] := (3^n/4^(2n-1)) Binomial[2n-1, n] Hypergeometric2F1[1, 1-n, 1+n, -1/3] // Numerator; Array[a, 20] (* Jean-François Alcover, Mar 22 2019 *)
  • PARI
    a(n) = numerator(sum(k=n, 2*n-1, binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1))); \\ Michel Marcus, Mar 23 2019
    
  • SageMath
    def A102556(n): return ( 3*(1-1/sqrt(4-3*x))/(2*(1-x)) ).series(x,n+1).list()[n].numerator()
    print([A102556(n) for n in range(31)]) # G. C. Greubel, Jan 31 2025

Formula

From Robert Israel, Sep 29 2016: (Start)
a(n) is the numerator of p(n) = Sum_{k=n..2*n-1} binomial(2*n-1,k)*3^(2*n-k)/4^(2*n-1).
8(n+1)*p(n+2) = (14*n+11)*p(n+1) - 3*(2*n+1)*p(n), for n >= 1.
G.f. of p(n): 3*x*(1 - 1/sqrt(4-3*x))/(2-2*x). (End)

A102558 Numerator of the probability that (2n+1)-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

3, 9, 27, 837, 891, 729, 12393, 277749, 4782969, 91703097, 92293587, 82019061, 2674388259, 10722885057, 155747819547, 19336668383673, 667382013477, 1019303306559, 716912704223253, 717162977859147, 29411190301301847
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			1 - (3*sqrt(3))/(4*Pi), 1 - (9*sqrt(3))/(8*Pi), 1 - (27*sqrt(3))/(20*Pi), ...
		

Crossrefs

Cf. A102556, A102557, A102559 (denominator).

Programs

  • Mathematica
    Table[Numerator[Simplify[Pi/Sqrt[3] - 3^(n+1)*Hypergeometric2F1[1/2, 1/2 + n, 3/2+n, 3/4]/(2*(2*n+1)*Binomial[2*n,n])]], {n,40}] (* G. C. Greubel, Feb 01 2025 *)

Formula

From G. C. Greubel, Feb 01 2025: (Start)
a(n) = numerator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*binomial(2*n, n))) * Sum_{k>=0} binomial(2*k, k)*(3/16)^k/(2*k + 2*n + 1).
a(n) = numerator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*(2*n+1)*binomial(2*n,n))) * Hypergeometric2F1([1/2, 1/2 + n], [3/2+n], 3/4). (End)

A102559 Denominator of the probability that (2n+1)-dimensional Gaussian random triangle has an obtuse angle.

Original entry on oeis.org

4, 8, 20, 560, 560, 440, 7280, 160160, 2722720, 51731680, 51731680, 45762640, 1487285800, 5949143200, 86262576400, 10696559473600, 368846878400, 562976814400, 395772700523200, 395772700523200, 16226680721451200
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			1 - (3*sqrt(3))/(4*Pi), 1 - (9*sqrt(3))/(8*Pi), 1 - (27*sqrt(3))/(20*Pi), ...
		

Crossrefs

Cf. A102556, A102557, A102558 (numerator).

Programs

  • Mathematica
    Table[Denominator[Simplify[Pi/Sqrt[3] -(3^(n+1)*Hypergeometric2F1[1/2, 1/2+ n, 3/2+n, 3/4])/(2*(2*n+1)*Binomial[2*n,n])]], {n,30}] (* G. C. Greubel, Feb 01 2025 *)

Formula

From G. C. Greubel, Feb 01 2025: (Start)
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*binomial(2*n, n))) * Sum_{k>=0} binomial(2*k, k)*(3/16)^k/(2*k + 2*n + 1).
a(n) = denominator( p(n) ), where p(n) = Pi/sqrt(3) - (3^(n+1)/(2*(2*n+1)*binomial(2*n,n))) * Hypergeometric2F1([1/2, 1/2 + n], [3/2+n], 3/4). (End)

A249491 Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

3, 3, 4, 1, 2, 2, 3, 3, 0, 5, 1, 3, 8, 8, 1, 4, 5, 5, 7, 5, 3, 2, 3, 7, 5, 5, 8, 1, 2, 6, 5, 0, 4, 9, 0, 5, 9, 8, 5, 0, 2, 4, 5, 6, 6, 8, 0, 9, 7, 2, 9, 4, 2, 7, 5, 8, 2, 3, 2, 4, 0, 0, 9, 9, 1, 2, 3, 1, 4, 6, 3, 5, 4, 7, 6, 1, 6, 4, 2, 4, 0, 2, 0, 0, 6, 4, 7, 7, 6, 6, 2, 0, 2, 9, 0, 9, 9, 5, 5, 3, 2, 2, 6, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			3.341223305138814557532375581265049059850245668...
		

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticE(1/2)-sqrt(3)*EllipticK(I/sqrt(3)), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    ek[x_] := EllipticK[x^2/(-1 + x^2)]/Sqrt[1 - x^2]; ee[x_] := EllipticE[x^2]; p = 4*ee[1/2] - (3/2)*ek[1/2]; (* or *) p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; RealDigits[p, 10, 104] // First
    RealDigits[ N[ EllipticE[-8], 102]][[1]] (* Altug Alkan, Oct 02 2018 *)
    RealDigits[3 EllipticE[8/9], 10, 102][[1]] (* Jan Mangaldan, Nov 24 2020 *)
  • PARI
    magm(a,b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a,b,c] = [(a+b)/2,c+z,c-z]); (a+b)/2
    E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)
    K(x)=Pi/2/agm(1,sqrt(1-x))
    4*E(1/4) - sqrt(3)*K(-1/3) \\ Charles R Greathouse IV, Aug 02 2018

Formula

p = 4*E(1/4) - sqrt(3)*K(-1/3), where E is the complete elliptic integral and K the complete elliptic integral of the first kind.
Equals A093728/2. - Altug Alkan, Oct 02 2018

A093581 Numerators of odd moments in the distribution of chord lengths for picked at random on the circumference of a unit circle.

Original entry on oeis.org

4, 32, 512, 4096, 131072, 1048576, 16777216, 134217728, 8589934592, 68719476736, 1099511627776, 8796093022208, 281474976710656, 2251799813685248, 36028797018963968, 288230376151711744
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2004

Keywords

Comments

Presumably this is the same as A102557? - Andrew S. Plewe, Apr 18 2007
A102557(n) equals a(n) for n <= 55000. - G. C. Greubel, Oct 20 2024

Examples

			1, 4/Pi, 2, 32/(3*Pi), 6, 512/(15*Pi), 20, 4096/(35*Pi), ...
		

Crossrefs

Denominators are A001803*Pi.

Programs

  • Magma
    A093581:= func< n | Power(2, 4*n-2-(&+Intseq(2*(n-1), 2))) >;
    [A093581(n): n in [1..30]]; // G. C. Greubel, Oct 20 2024
    
  • Mathematica
    Table[Power[2, 4*n-2 - DigitCount[n-1,2,1]], {n, 30}] (* G. C. Greubel, Oct 20 2024 *)
  • SageMath
    def A093581(n): return pow(2, 4*n-2 - sum((2*n-2).digits(2)))
    [A093581(n) for n in range(1,31)] # G. C. Greubel, Oct 20 2024

Formula

a(n) = 4*A061549(n-1).

A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.23255934654317823447309035975033389931043501543502...
		

Crossrefs

Programs

  • Maple
    Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First
    RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)

Formula

rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.

A249538 Decimal expansion of 3*sqrt(Pi), the average perimeter of a random Gaussian triangle in two dimensions.

Original entry on oeis.org

5, 3, 1, 7, 3, 6, 1, 5, 5, 2, 7, 1, 6, 5, 4, 8, 0, 8, 1, 8, 9, 4, 5, 0, 2, 4, 5, 0, 0, 2, 3, 4, 3, 5, 5, 4, 8, 3, 9, 2, 6, 4, 8, 3, 6, 8, 3, 6, 7, 1, 6, 1, 3, 8, 4, 6, 4, 1, 4, 2, 3, 3, 6, 9, 5, 5, 8, 7, 3, 3, 8, 5, 3, 7, 7, 3, 0, 9, 6, 5, 4, 4, 1, 2, 4, 8, 5, 1, 9, 7, 0, 2, 1, 5, 6, 3, 3, 9, 9, 6, 2, 4, 8, 6, 8
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			5.317361552716548081894502450023435548392648368367161...
		

Crossrefs

Cf. A002161 (average side length in two dimensions), A102556, A102557.

Programs

  • Mathematica
    RealDigits[3*Sqrt[Pi], 10, 105] // First
  • PARI
    3*sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

A249542 Decimal expansion of the average product of a side and an adjacent angle of a random Gaussian triangle in two dimensions.

Original entry on oeis.org

1, 6, 3, 7, 7, 2, 9, 3, 2, 4, 8, 5, 6, 8, 6, 8, 0, 3, 2, 7, 8, 0, 1, 5, 6, 9, 5, 6, 7, 9, 8, 4, 7, 6, 4, 5, 5, 8, 2, 0, 3, 8, 1, 9, 8, 7, 0, 9, 0, 5, 9, 3, 4, 1, 7, 5, 4, 8, 7, 6, 5, 2, 2, 4, 7, 7, 1, 2, 0, 5, 6, 8, 9, 3, 3, 1, 1, 1, 6, 4, 9, 0, 2, 1, 5, 0, 7, 1, 1, 3, 4, 8, 3, 2, 2, 0, 7, 1, 2, 4, 6, 9, 9, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.
As of 2010, an exact expression of this constant was not known, according to Steven Finch.
This average product is noticeably smaller than the product of the averages sqrt(Pi)*Pi/3 = 1.8561..., the side length being negatively correlated with the adjacent angle value.

Examples

			1.6377293248568680327801569567984764558203819870905934...
		

Crossrefs

Programs

  • Mathematica
    ex = (-Sqrt[3]*Log[3] + Pi^2 - 8*PolyLog[2, 2-Sqrt[3]] + 2*PolyLog[2, 7-4*Sqrt[3]])/(2*Sqrt[Pi]); RealDigits[ex, 10, 105] // First
  • Python
    from mpmath import *
    mp.dps=106
    C = (-sqrt(3)*log(3) + pi**2 - 8*polylog(2, 2-sqrt(3)) + 2*polylog(2, 7 - 4*sqrt(3)))/(2*sqrt(pi))
    print([int(n) for n in list(str(C).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 04 2017

Formula

Equals (1/(3*Pi))*Integral_{x=0..oo} Integral_{y=0..oo} Integral_{t=0..Pi} x^2*y*t*exp(-(1/3)*(x^2 - x*y*cos(t) + y^2)) dt dy dx.
Equals (-sqrt(3)*log(3) + Pi^2 - 8*Li_2(2-sqrt(3)) + 2*Li_2(7-4*sqrt(3)))/(2*sqrt(Pi)), where Li_2 is the dilogarithm function.

A378071 a(n) = denominator((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)).

Original entry on oeis.org

3, 5, 21, 45, 385, 819, 3465, 7293, 122265, 255255, 1062347, 2204475, 18253053, 37702175, 155451825, 319929885, 10518906825, 21585857535, 88482569175, 181144476975, 1481850184815, 3027700543725, 12361581411855, 25214881603275, 411156946959525, 837470267650107
Offset: 0

Views

Author

Peter Luschny, Dec 05 2024

Keywords

Crossrefs

Cf. A102557 (numerator).

Programs

  • Maple
    a := n -> (4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!); seq(denom(a(n)), n = 0..25);
  • Mathematica
    Table[Denominator[(4^(2*n + 1)*n!^2)/((2*n + 3)*(2*n)!)], {n, 0, 25}] (* Michael De Vlieger, Dec 05 2024 *)
  • PARI
    a(n) = denominator((4^(2*n+1)*n!^2)/((2*n+3)*(2*n)!)); \\ Michel Marcus, Dec 05 2024

A249522 Decimal expansion of the expected product of two sides of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

5, 3, 0, 7, 9, 7, 3, 3, 7, 2, 5, 3, 0, 7, 5, 2, 2, 9, 7, 0, 6, 7, 9, 5, 8, 9, 8, 9, 8, 7, 7, 8, 1, 6, 6, 4, 8, 3, 8, 4, 3, 1, 8, 8, 8, 2, 1, 9, 9, 8, 4, 3, 9, 1, 6, 7, 9, 6, 1, 9, 6, 1, 2, 1, 7, 4, 6, 1, 8, 1, 8, 2, 0, 8, 1, 5, 6, 1, 8, 7, 6, 9, 0, 4, 2, 2, 8, 0, 1, 7, 2, 9, 3, 9, 0, 2, 5, 3, 3, 5, 2, 4, 6
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			5.3079733725307522970679589898778166483843188821998439167961...
		

Crossrefs

Programs

  • Mathematica
    p = 2 + 6*Sqrt[3]/Pi; RealDigits[p, 10, 104] // First

Formula

p = 2 + 6*sqrt(3)/Pi.
Showing 1-10 of 11 results. Next