A102560 Expansion of (1-x^3)/(1-x^4).
1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1).
Programs
-
Magma
&cat [[1, 0, 0, -1]^^30]; // Wesley Ivan Hurt, Jul 06 2016
-
Maple
seq(op([1, 0, 0, -1]), n=0..50); # Wesley Ivan Hurt, Jul 06 2016
-
Mathematica
CoefficientList[ Series[(1 - x^3)/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Jan 15 2005 *)
-
PARI
x='x+O('x^50); Vec((1 - x^3)/(1 - x^4)) \\ G. C. Greubel, Jun 02 2017
Formula
G.f.: (1+x+x^2)/(1+x+x^2+x^3).
a(n) = (-1)^floor(n/2)/2+(-1)^n/2.
a(n) = cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + cos(Pi*n)/2.
a(n) = -a(n-1)-a(n-2)-a(n-3) for n>2 with a(0)=1, a(1)=a(2)=0. - Jaume Oliver Lafont, Dec 05 2008
Comments