cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102619 Numbers which are the sum of two positive cubes and divisible by 19.

Original entry on oeis.org

133, 152, 513, 855, 1064, 1216, 1729, 1843, 2071, 2261, 2413, 2869, 2926, 3059, 3439, 3591, 4104, 4123, 4921, 4940, 5833, 6175, 6840, 7163, 7657, 8512, 9386, 9728, 10773, 13167, 13357, 13718, 13832, 13851, 14174, 14364, 14744, 15542, 15561, 16568
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 31 2005

Keywords

Comments

If 12*h-1083 is a square then some values of 19*h are in this sequence. It is easy to verify that h is of the form 3*m^2-3*m+91, and therefore 19*(3*m^2-3*m+91) = (10-m)^3+(m+9)^3. - Vincenzo Librandi, May 10 2013

Crossrefs

Cf. A003325, A101421 (divisible by k=7), A101852 (k=11), A094447 (k=13), A099178 (k=17), A101806 (k=23), A224483 (k=29), A102658 (k=31), A102618 (k=37).

Programs

  • Magma
    [n: n in [2..2*10^4] | exists{i: i in [1..Iroot(n-1,3)] | IsPower(n-i^3,3) and IsZero(n mod 19)}]; // Bruno Berselli, May 10 2013
  • Mathematica
    upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 19] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[17000] (* Giovanni Resta, Jun 12 2020 *)