cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102620 Number of legal Go positions on a 1 X n board (for which 3^n is a trivial upper bound).

Original entry on oeis.org

1, 5, 15, 41, 113, 313, 867, 2401, 6649, 18413, 50991, 141209, 391049, 1082929, 2998947, 8304961, 22998865, 63690581, 176377839, 488441801, 1352638145, 3745850473, 10373355075, 28726852897, 79553054089, 220305664445, 610090792143, 1689519766073, 4678774170521, 12956893537633, 35881426208451, 99366159258241, 275173945103905, 762037102261925, 2110303520940111
Offset: 1

Views

Author

John Tromp, Jan 31 2005

Keywords

Examples

			a(2)=5 because .. .O .S O. S. are the 5 legal 1 X 2 Go positions, while OO OS SO SS are all illegal, having stones without liberties.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-1,1},{1,5,15},40] (* Harvey P. Dale, Sep 16 2016 *)
  • Maxima
    makelist(sum((2^k)*(binomial(n+k+1,3*k+2)+2*binomial(n+k,3*k+2)+binomial(n+k-1,3*k+2)),k,0,(n-1)/2),n,0,24); /* Emanuele Munarini, Apr 17 2013 */
    
  • PARI
    Vec(x*(1+x)^2/((1-x)^3-2*x^2)+O(x^66)) \\ Joerg Arndt, Apr 17 2013

Formula

For n >= 4, a(n) = 3*a(n-1) - a(n-2) + a(n-3).
G.f.: x(1+x)^2/((1-x)^3-2x^2). - Josh Simmons (jsimmons10(AT)my.whitworth.edu), May 06 2010
a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * (binomial(n+k+1,3*k+2) + 2*binomial(n+k,3*k+2) + binomial(n+k-1,3*k+2)). - Emanuele Munarini, Apr 17 2013

Extensions

More terms from Joerg Arndt, Apr 17 2013