A102631 a(n) = n^2 / (squarefree kernel of n).
1, 2, 3, 8, 5, 6, 7, 32, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 96, 125, 26, 243, 56, 29, 30, 31, 512, 33, 34, 35, 216, 37, 38, 39, 160, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 486, 55, 224, 57, 58, 59, 120, 61, 62, 189, 2048, 65, 66, 67
Offset: 1
Links
- Michel Marcus, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
a[n_] := n^2/Times @@ FactorInteger[n][[All, 1]]; Array[a, 70] (* Jean-François Alcover, Jun 11 2019 *)
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,2] = 2*f[k,2]-1); factorback(f); \\ Michel Marcus, Aug 20 2017
-
Sage
def A102631(n) : p = n for a in factor(n) : if a[1] > 1 : p = p * a[0]^(a[1]-1) return p [A102631(n) for n in (1..67)] # Peter Luschny, Feb 07 2012
Formula
Multiplicative with a(p^e) = p^{2e-1}. - Franklin T. Adams-Watters, Nov 17 2006
Dirichlet g.f.: Product_{p prime} (1 - p/(p^2 - p^s)). - Amiram Eldar, Aug 28 2023
a(n) = A350390(n^2). - Amiram Eldar, Nov 30 2023
Comments