cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002618 a(n) = n*phi(n).

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1

Views

Author

Keywords

Comments

Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)

Examples

			a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
		

References

  • Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A047916.
Cf. A002619, A011755 (partial sums), A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.

Programs

Formula

Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024

Extensions

Better description from Labos Elemer, Feb 18 2000

A019554 Smallest number whose square is divisible by n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 8, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 18, 55, 28, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69, 70, 71, 12, 73, 74, 15, 38, 77
Offset: 1

Views

Author

R. Muller

Keywords

Comments

A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), and b*c = A019554(n) = "outer square root" of n.
Instead of the terms "inner square root" and "outer square root", we may use the terms "lower square root" and "upper square root", respectively. Upper k-th roots have been studied by Broughan (2002, 2003, 2006). - Petros Hadjicostas, Sep 15 2019
The number of times each number k appears in this sequence is A034444(k). The first time k appears is at position A102631(k). - N. J. A. Sloane, Jul 28 2021

Crossrefs

Cf. A000188 (inner square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Haskell
    a019554 n = product $ zipWith (^)
                (a027748_row n) (map ((`div` 2) . (+ 1)) $ a124010_row n)
    -- Reinhard Zumkeller, Apr 13 2013
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A019554(n): return n//prod(p**(q//2) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
  • Maple
    with(numtheory):A019554 := proc(n) local i: RETURN(op(mul(i,i=map(x->x[1]^ceil(x[2]/2),ifactors(n)[2])))); end;
  • Mathematica
    Flatten[Table[Select[Range[n],Divisible[#^2,n]&,1],{n,100}]] (* Harvey P. Dale, Oct 17 2011 *)
    f[p_, e_] := p^Ceiling[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n)=n/core(n,1)[2] \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

Replace any square factors in n by their square roots.
Multiplicative with a(p^e) = p^ceiling(e/2).
Dirichlet series:
Sum_{n>=1} a(n)/n^s = zeta(2*s-1)*zeta(s-1)/zeta(2*s-2), (Re(s) > 2);
Sum_{n>=1} (1/a(n))/n^s = zeta(2*s+1)*zeta(s+1)/zeta(2*s+2), (Re(s) > 0).
a(n) = n/A000188(n).
a(n) = denominator of n/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = Product_{k=1..A001221(n)} A027748(n,k)^ceiling(A124010(n,k)/2). - Reinhard Zumkeller, Apr 13 2013
Sum_{k=1..n} a(k) ~ 3*zeta(3)*n^2 / Pi^2. - Vaclav Kotesovec, Sep 18 2020
Sum_{k=1..n} 1/a(k) ~ 3*log(n)^2/(2*Pi^2) + (9*gamma/Pi^2 - 36*zeta'(2)/Pi^4)*log(n) + 6*gamma^2/Pi^2 - 108*gamma*zeta'(2)/Pi^4 + 432*zeta'(2)^2/Pi^6 - 36*zeta''(2)/Pi^4 - 15*sg1/Pi^2, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jul 27 2021
a(n) = sqrt(n*A007913(n)). - Jianing Song, May 08 2022
a(n) = sqrt(A053143(n)). - Amiram Eldar, Sep 02 2023
From Mia Boudreau, Jul 17 2025: (Start)
a(n^2) = n.
a(A005117(n)) = A005117(n).
a(A133466(n)) = A133466(n)/2.
a(A195085(n)) = A195085(n)/3. (End)

A020478 Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).

Original entry on oeis.org

1, 10, 33, 88, 145, 330, 385, 736, 945, 1450, 1441, 2904, 2353, 3850, 4785, 6016, 5185, 9450, 7201, 12760, 12705, 14410, 12673, 24288, 18625, 23530, 26001, 33880, 25201, 47850, 30721, 48640, 47553, 51850, 55825, 83160, 51985, 72010, 77649, 106720
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
  • PARI
    a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])
    
  • PARI
    a(n)=local(c=0); forvec(x=vector(4,k,[1,n]),c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c

Formula

From Vladeta Jovovic, Apr 22 2002: (Start)
a(n) = n^4 - A005353(n).
Multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1). (End)
Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(s-1).
A102631(n) | a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / (24*Zeta(3)). - Vaclav Kotesovec, Jan 31 2019
From Piotr Rysinski, Sep 11 2020: (Start)
a(n) = n * A069097(n).
Proof: a(n) is multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1), A069097(n) is multiplicative with A069097(p^e) = p^(e-1)*(p^e*(p+1)-1), so a(p^e) = p^e*A069097(p^e). (End)

A355038 a(n) = n^2 times the squarefree kernel of n.

Original entry on oeis.org

1, 8, 27, 32, 125, 216, 343, 128, 243, 1000, 1331, 864, 2197, 2744, 3375, 512, 4913, 1944, 6859, 4000, 9261, 10648, 12167, 3456, 3125, 17576, 2187, 10976, 24389, 27000, 29791, 2048, 35937, 39304, 42875, 7776, 50653, 54872, 59319, 16000, 68921, 74088, 79507, 42592, 30375
Offset: 1

Views

Author

Peter Munn, Jun 16 2022

Keywords

Crossrefs

The range of values is A335988.

Programs

  • Mathematica
    a[n_] := n^2 * Times @@ FactorInteger[n][[;; , 1]]; Array[a, 50] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = n^2 * factorback(factor(n)[,1]);

Formula

Multiplicative with a(p^e) = p^(2e+1).
a(n) = n^2 * A007947(n).
a(n) = A064549(n^2). - Amiram Eldar, Jun 20 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 4 = 0.1761105502... . - Amiram Eldar, Nov 13 2022
a(n) = A356191(n^2). - Amiram Eldar, Nov 30 2023

A327170 Number of divisors d of n such that A327171(d) (= phi(d)*core(d)) is equal to n.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

From any solution (*) to A327171(d) = d*phi(d) = n, we obtain a solution for core(d')*phi(d') = n by forming a "pumped up" version d' of d, by replacing each exponent e_i in the prime factorization of d = p_1^e_1 * p_2^e_2 * ... * p_k^e_k, with exponent 2*e_i - 1 so that d' = p_1^(2*e_1 - 1) * p_2^(2*e_2 - 1)* ... * p_k^(2*e_k - 1) = A102631(d) = d*A003557(d), and this d' is also a divisor of n, as n = d' * A173557(d). Generally, any product m = p_1^(2*e_1 - x) * p_2^(2*e_2 - y)* ... * p_k^(2*e_k - z), where each x, y, ..., z is either 0 or 1 gives a solution for core(m)*phi(m) = n, thus every nonzero term in this sequence is a power of 2, even though not all such m's might be divisors of n.
(* by necessity unique, see Franz Vrabec's Dec 12 2012 comment in A002618).
On the other hand, if we have any solution d for core(d)*phi(d) = n, we can find the unique such divisor e of d that e*phi(e) = n by setting e = A019554(d).
Thus, it follows that the nonzero terms in this sequence occur exactly at positions given by A082473.
Records (1, 2, 4, 8, 16, ...) occur at n = 1, 12, 504, 223200, 50097600, ...

Examples

			For n = 504 = 2^3 * 3^2 * 7, it has 24 divisors, out of which four divisors: 42 (= 2^1 * 3^1 * 7^1), 84 (= 2^2 * 3^1 * 7^1), 126 (= 2^1 * 3^2 * 7^1), 252 (= 2^2 * 3^2 * 7^1) are such that A007913(d)*A000010(d) = 504, thus a(504) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 120]}, Table[DivisorSum[n, 1 &, s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    A327170(n) = sumdiv(n,d,eulerphi(d)*core(d) == n);

Formula

a(n) = Sum_{d|n} [A000010(d)*A007913(d) == n], where [ ] is the Iverson bracket.

A367418 The exponentially odd numbers (A268335) divided by their squarefree kernels (A007947).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A102631, with the exponentially odd numbers instead of the square numbers (A000290).
All the terms are square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n / Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A003557(A268335(n)).
a(n) = A268335(n)/A367417(n).
a(n) = A367419(n)^2.
a(n) = A268335(n)^2/A367406(n).
a(n) = A008833(A268335(n)). - Amiram Eldar, Nov 30 2023

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.

A102630 Numbers n such that no positive number of the form prime(n)-2^k is prime.

Original entry on oeis.org

1, 2, 31, 35, 54, 67, 68, 74, 97, 109, 126, 134, 140, 151, 155, 165, 168, 171, 181, 205, 244, 251, 256, 260, 274, 275, 276, 285, 298, 328, 330, 341, 352, 368, 376, 389, 405, 413, 417, 421, 430, 444, 447, 450, 451, 463, 471, 481, 495, 509, 510, 516, 522, 526
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

Large primes tested by Primo.

Examples

			Prime(1)=2, 2-2^0=1, not prime.
Prime(31)=127, 127-2^0 through 127-2^6 are nonprime.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{k = Floor[ Log[2, Prime[n]]], p = Prime[n]}, While[k > -1 && !PrimeQ[p - 2^k], k-- ]; If[k > 0, True, False]]; Select[ Range[ 536], !fQ[ # ] &] (* Robert G. Wilson v, Jan 24 2005 *)

Extensions

More terms from Robert G. Wilson v, Jan 24 2005

A346245 Numbers k for which A003415(k) > k*A003557(k).

Original entry on oeis.org

30, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1110, 1218, 1230, 1290, 1302, 1410, 1554, 1590, 1722, 1770, 1830, 2010, 2130, 2190, 2310, 2370, 2490, 2670, 2730, 2910, 3030, 3090, 3210, 3270, 3390, 3570, 3810, 3930, 3990, 4110, 4170, 4290, 4470, 4530, 4710, 4830, 4890, 5010, 5190, 5370, 5430
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Comments

Numbers k such that A342001(k) > k.
Numbers k such that their arithmetic derivative (A003415(k)) is larger than A102631(k), k^2 / (squarefree kernel of k).

Crossrefs

Positions of negative terms in A346244.
Seems to have many common terms with A181629, A265501 and A286652.
Showing 1-9 of 9 results.