A063445 Moebius transform of f(x) = EulerPhi(x^2) function (A002618).
1, 1, 5, 6, 19, 5, 41, 24, 48, 19, 109, 30, 155, 41, 95, 96, 271, 48, 341, 114, 205, 109, 505, 120, 480, 155, 432, 246, 811, 95, 929, 384, 545, 271, 779, 288, 1331, 341, 775, 456, 1639, 205, 1805, 654, 912, 505, 2161, 480, 2016, 480, 1355, 930, 2755, 432
Offset: 1
Examples
For n=20, divisors = {1,2,4,5,10,20}, phi(d^2) = {1,2,8,20,40,160}, mu(20/d) = {0,1,-1,0,-1,1}, a(20) = 0 + 2 - 8 + 0 - 40 + 160 = 114. a(20) = a(4)*a(5) = (16 - 8 - 4 + 2)*(25 - 5 - 1) = 6*19 = 114.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Sum[EulerPhi[d]*MoebiusMu[n/d]*d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *)
-
PARI
a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)*moebius(n/d)))
Formula
a(n) = Sum_{d|n} phi(d^2)*mu(n/d).
Multiplicative with a(p) = p^2 - p - 1 and a(p^e) = p^(2*e) - p^(2*e-1) - p^(2*e-2) + p^(2*e-3), e > 1. - Vladeta Jovovic, Jul 29 2001
Dirichlet g.f. zeta(s-2)/(zeta(s)*zeta(s-1)). - R. J. Mathar, Feb 09 2011
Sum_{k=1..n} a(k) ~ 2*n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2-p-1) + p/((p-1)^3 * (p+1)^2)) = 3.037448431566721466562170968413075105160439538735056586164601312913619316... - Vaclav Kotesovec, Sep 20 2020
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)*moebius(gcd(i, j, n)) = Sum_{d divides n} d*moebius(d)*J_2(n/d), where J_2 is the Jordan totient function A007434. - Peter Bala, Jan 21 2024
Comments