cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216653 Number A(n,k) of n-digit k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

10, 4, 90, 3, 6, 900, 2, 2, 22, 9000, 2, 2, 5, 68, 90000, 2, 1, 2, 12, 217, 900000, 2, 1, 1, 4, 25, 683, 9000000, 2, 0, 1, 3, 8, 53, 2163, 90000000, 2, 0, 1, 1, 3, 14, 116, 6837, 900000000, 2, 0, 1, 1, 2, 6, 25, 249, 21623, 9000000000
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Examples

			A(1,1) = 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
A(1,2) = 4: 0, 1, 4, 9.
A(2,2) = 6: 16, 25, 36, 49, 64, 81.
A(3,3) = 5: 125, 216, 343, 512, 729.
A(4,4) = 4: 1296, 2401, 4096, 6561.
A(5,5) = 3: 16807, 32768, 59049.
A(6,6) = 3: 117649, 262144, 531441.
Square array A(n,k) begins:
:n\k|        1:     2:    3:   4:   5:  6:  7:  8
+---+--------------------------------------------
: 1 |       10,     4,    3,   2,   2,  2,  2,  2
: 2 |       90,     6,    2,   2,   1,  1,  0,  0
: 3 |      900,    22,    5,   2,   1,  1,  1,  1
: 4 |     9000,    68,   12,   4,   3,  1,  1,  1
: 5 |    90000,   217,   25,   8,   3,  2,  2,  1
: 6 |   900000,   683,   53,  14,   6,  3,  2,  1
: 7 |  9000000,  2163,  116,  25,  10,  5,  2,  2
: 8 | 90000000,  6837,  249,  43,  14,  7,  4,  2
		

Crossrefs

Main diagonal gives: A102690.

Programs

  • Maple
    r:= proc(n, k) local b; b:= iroot(n, k); b+`if`(b^k r(10^n, k) -r(10^(n-1), k) +`if`(n=1, 1, 0):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);

A102691 Least n-expodigital number (i.e., numbers m such that m^n has exactly n decimal digits).

Original entry on oeis.org

0, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Lekraj Beedassy, Jan 21 2005

Keywords

Comments

10^(n-1) being the smallest n-digit number, n-expodigital numbers exist iff 10^(n-1) < 9^n, i.e., iff n-1 < n*log_10(9); this condition holds for all n up to 21 because beyond we have, for instance, 20 < 22*log_10(9) < 21. Thus numbers can be at most 21-expodigital.

Examples

			a(3)=5 because this is the first number followed by 6,7,8 and 9 which are all 3-expodigital: 5^3 = 125; 6^3 = 216; 7^3 = 343; 8^3 = 512; 9^3 = 729.
		

Crossrefs

Cf. A102690.
Essentially the same as A067471. - R. J. Mathar, Aug 30 2008

Formula

a(n) = 10 - A102690(n).

Extensions

Edited by Charles R Greathouse IV, Aug 03 2010
Showing 1-2 of 2 results.