A102709 Let a(n,m) = card{f^(n) : f is a mapping from a set of m elements into itself}, where f^(l)(x) = f^(l-1)(f(x)),l>0, f^(0)(x) = x; sequence gives a(n,5).
1, 3125, 1075, 985, 580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901, 580, 1305, 295, 1305, 556, 925, 655, 1305, 220, 1281, 655, 925, 580, 1305, 271, 1305, 580, 925, 655, 1281, 220, 1305, 655, 925, 556, 1305, 295, 1305, 580, 901, 655, 1305, 220
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1).
Programs
-
Mathematica
Join[{1, 3125, 1075, 985},LinearRecurrence[{-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1},{580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901},45]] (* Ray Chandler, Sep 08 2015 *)
Formula
Empirical g.f.: 1+x*(60*x^14 +480*x^13 +2360*x^12 +2584*x^11 +3099*x^10 +2188*x^9 -522*x^8 -4057*x^7 -8367*x^6 -9981*x^5 -12231*x^4 -9965*x^3 -8310*x^2 -4200*x -3125) / ((x -1)*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Aug 07 2013
Extensions
a(0) inserted by Alois P. Heinz, Sep 10 2014
Comments